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Abstract: In this study, we determine the basic reproduction number using a graph-theoretic form of Gaussian
elimination using digraph reduction method and stability analysis in e-SEIQRS (e-Electronic, Susceptible,
Exposed, Infectious, Quarantined, Recovered) Epidemic Model of a computer network.
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INTRODUCTION

Electromc mail and use of secondary devices are the
major sources for the transmission of malicious objects in
computer network these days. Malicious object is a code
that infects computer systems. There are different kinds of
malicious objects such as: Worm, Virus, Trojan etc. which
differ according to the way they attack computer systems
and the they perform. Since,
transmission of malicious objects in computer network 1s
epidemic m nature. The action of malicious objects
throughout a network can be studied by using
epidemiological models for disease  propagation
(Mishra and Pandey, 2012; Mishra and Tha, 2009,
Yuan and Chen, 2008). Based on the Kermack and
MecKendrick (1927, 1932, 1933) SIR Model, dynamical
models for malicious objects propagation were proposed,

malicious actions

providing estimations for temporal evolutions of mfected
nodes depending on network parameters considering
topological aspects of the network (Draief et al., 2008,
Kephart, 1994; Kephart et al., 1993; Keeling and Eames,
2005; Williamson and Leveille, 2003; Piqueira and Cesar,
2008, Piquewra et al, 2005, Datta and Wang, 2005).
Modification of STR models generated guides for infection
prevention by using the concept of epidemiological
threshold (Mishra and Pandey, 2012; Mishra and Tha,
2010; Draief et al, 2008). Recently, more research
attention has been paid to the combination of virus
propagation models and antivirus countermeasures to
study the prevalence of wvirus, for example, virus
mmmunization (Kephart, 1994; Kephart ef al., 1993
Chen and Jamil, 2006) and quarantine (Mishra and Tha,

2010, Hethcote et al, 2002). Since, the malicious objects
differ in their attacking behavior, a non-linear incidence
rates can give a reasonable qualitative description of the
disease dynamics. Many researchers have developed
mathematical models with non-linear incidence rate
(Keeling and Eames, 2005; Piqueira et al., 2005; Datta and
Wang, 2005).

In a certain sense, the propagation of virtual
malicious objects in a system of interacting computers
could be compared with a disease transmitted by vectors
when dealing with public health Concerning diseases
transmitted by vectors, one has to take into account that
the parasites spend part of its lifetime inhabiting the
vector, so that the infection switches back and forth
between host and vector. May and Lloyvd (2001),
Anderson and May (1991) discussed the spreading nature
of biological viruses, parasites, etc., leading to infectious
diseases in human population through several epidemic
models. Here, we do the following for a e-SEIQRS
epidemic model:

»  Determine R, by graph reduction method
»  Stability analysis of model under quarantine defense

Basic terminologies: Malicious objects are computer
programs that operate on behalf of a potential mtruder to
aid in attacking on network. Historically, an arsenal of
such agents consisted of viruses, worms and trojanized
programs. By combining key feature of these agents,
attackers are now able to create software that poses a
serious threat even to orgamzation that fortify their
network perimeter with firewalls.
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Quarantine a node: To move an undesired node form
the computer network which 1s mfected by any
malicious objects and is not accessible by regular users.
Anti-malicious software is a class of program that
searches the hard drive and floppy disks for any known
or potential malicious objects. As new malicious objects
are discovered by the anti-malicious vendor, their binary
patterns are added to a signature database that 1s
downloaded periodically to the user’s anti-malicious
program via. the web.

MATERIALS AND METHODS

The ¢-SEIQRS Model formulation and assumtions: In the
proposed SEIQRS Model for infections that don’t confer
immunity, susceptible nodes first goes through a latent
period (and 1s said to become exposed) after nfection
before becoming infectious, thereafter, some infected
nodes stay in the T class while they are infectious and
then move to the recovery class after the run of anti
malicious software. Other infected nodes are transferred
into the quarantine class Q while they are infectious and
then move to the R class. Since, in the cyber world the
acquired immunity is not permanent, the recovered nodes
return back to the susceptible class. The schematic
diagram for the flow of malicious objects n the computer
network is depicted in Fig. 1.

We assume the population has a homogeneous
spatial distribution and the mixing of hosts follow the law
of mass action. More specifically, we assume that the
local density of the total population is a constant though
the total population size N(t) = S(OH+E(D+HI)+OQ(O+R(L)
may vary with time. Here, 5(t), E(t), I(t), Q(t), R(t) denote
the sizes of S, E, L, Q, R classes at any time t, respectively.
The per capita contact rate o which is the average number
of effective contacts with other nodes per unit time is
assumed to be a constant.

To avoid the total crash of the computer networl, we
divide the total node N(t) into subclasses of nodes which
are susceptible, exposed, infectious, quarantined and
recovered with sizes denoted by S(t), E(t), I(t),Q(t) R(t),
respectively. We assume that the local density of the
total population size, N = S+EH+Q+R may vary with
time and we let, A = S+E+I4+R be the active nodes (that 1s
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Fig. 1: Schematic diagram for the flow of worms in the
computer hetwork

the nodes which are not isolated). Based on our
assumptions on the dynamical transfer of the population
depicted in Fig. 1, we have the following system of Eq. 1:

ds
— = A-uS-o8l+nR
& s ™

dE
— = g3l- E
@ (u+y,)

% = 7, B-(u+8+y, + ol @)
dQ

— =y, (Ut

i T (uHSHE)Q

d

= torarminR

Thus:

N - A3-Q)

All the model parameters are positive constants. In
this SEIQRS Model, the flow is from the S class to the E
class, E class to the I class and then directly to the Am
class or to the Q class and then to the Am class and as
the recovery 1s not permanent in the cyber world, it again
returns back to the S class.

The total population size N (t) 15 variable with
N'(t) = A-puN-8(T(tHQ(t)). In the absence of the attack of
malicious objects, the population size of the node N
approaches the carrying capacity A/p. Therefore, the
reglomn:

Do (8,E,1,Q Am)eR}/S>0,E>0,120,Q=0,R >0, 5+
EH+Q+AmM < A/

is a positive invariant set for Eq. 1. To eliminate R form the

Eq. 1, we use:

R = 2.S-E1-Q
U

The reduced model 1s:

a5 L uS-oSTHN(A-S-E-1-Q)

dt I

9E _ Gsiquey)E

dt (2)
ar

b Y E-(W+8+y,+a)l

d

G R0

Let:
N, = S+EH+Q

Thus, form the reduced model Eq. 2 we have:
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afa,

Fig. 2: Creating a trivial node

o 2, e MG+
dt I
Form the Eq. 2, it can be seen that in the absence of
the malicious objects T=0=0Q,N,~A/n. Thus, D, = ((S, E,
I, Q) S=0, E=0, 1=0, Q=0, S+EAHT+Q ="/ is a positively
invariant region for model (Eq. 2) and it will is posed in D,.

V Calculation basic reproduction number by di-graph
reduction method: We use the notation as by
De-Camino-Beck et al. (2009) Van Den Driessche and
Watmough (2002) for an ODE disease transmission model
which 1s assumed to have a Disease Free Equilibrium
(DFE) in which all infected variables are zero and model
without disease is assumed to be stable.

Congider the ODE system for the infected variables
linearized about the DFE and write the coefficient
matrix as F-V assumed to be irreducible where F
contains new infection terms and V containsg the terms
representing transfer between compartments. From
Van Den Driessche and Watmough (2002), F is (entry
wise) non-negative, non zero and V 1s a non-singular
M-matrix. Thus, the next generation matrix FV"' is non
negative and non zero. The basic reproduction number R,
is defined as, R, = p(FV") where p denotes the spectral
radius.

Graph reduction rule associated with FA™-V: Rule 1;
(Creating a trivial node) to reduce the loop -8,;<0 to -1 at
node i, every arc entering i has weight divided by a;.

Rule 2; (Elimination of arcs through a trivial node) for
a trivial node i on a path j-i-lkthe two arcs are replaced
by j-k with weight equal to the product of weights on arc
j~1 and 1~k. Weights on multiple arcs j-k are added. If
there are no more paths through the trivial node I, then it
can be disregarded (Fig. 2 and 3).

Algorithm to compute R; from the digraph associated
with FA-V: Consider the matrix FA' is irreducible, then

At

Fig. 3: Elimination of arcs through trivial node

draw the associated digraph with arc j-1 if and only if the
(1,1) entry of the matrix 1s nonzero. If | =1 and (1, 1)
entry 1s -1, then 1 called a trivial node:

¢ Choose a node i with a loop

*+  Userulel to make node i trivial

¢ Disregarded node i by rule 2

*  Repeat steps 1-3 until only one node remains

s Setthe weight of this loop to zero giving an equation
for A

Then, R, 15 the reciprocal of the smallest positive
root x of the polynomial equation. Detail can be found by
De-Camino-Bek e al. (2009) on a graph-theoretic method
for the basis reproduction number in continuous time
epidemiolological methods.

Calculation of basic reproduction number by graph
reduction method in SEIQR e-Epidemic model: Consider
the SEIQRS Model presented n Eq. 1 and:

F{O os}v{w) 0 }
0O 0 -, {U+B+y, +ar)

With V non singular, Fig. 4 with nodes E, T shows the
digraph representation of matrix FA'-V and the detailed
digraph reduction procedure to obtain R;:
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Fig. da-c): Graph reduction procedure applied to the
SEIQRS Model
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Stability analysis of the disease-free equilibrium:
Steady states of model (Eg. 2) are given as:

AS- 2L X S B Q) =0
A u

GSI
A

3)

'(M+Y1)E =0
YlE'(M+8+'Y2 +)I =0
Y2 I'(M+8+E_’)Q =0

System (Eq. 3) has always the malicious objects-free
equilibrium P, = (A/p, 0, 0, O).

Lemma 1: If R <1, the malicious objects-free equilibrium
P, 1s locally asymptotically stable.

Proof: The linearization of Model (Eq. 1):

STRE o3 0 n
0 (uty,) as 0 0
0 Y- -(UHS+y, o) 0 0
0 ¥ -(ud+E) 0
0 o £ -(uty,)

Gives negative eigen values:
ho=-(wtn), =, A =-(ut8+E)

And other eigen values we will get from quadric
polynomial:

Al +}\*(2M+'Y1 +8+’Y2 T, )(M+6+Yz +0)-G3Y, =0
Rewrite equation:
)“2 +7\‘(2“‘+’Y1 +8+Y2 +G‘)+(“+’Y1 )(“‘+8+’Y2 +OL)(1'R[|) =0

From this equation, we will get two eigen value
having negative sign if R <1. Hence, by applying
Routh-Herwitz criteria, P, 15 locally asymptotically
stable.

Theorem 1: If R;<1 then the malicious objects free
equilibrium P, 1s globally asymptotically stable. Consider
a Lyapunov function:

L =y E+(u+yl
L' = I(M+Y1)(M+8+Y2+G)(Rn'l)

IfR,<1 thenT.'<0 andT.! =0 only if =0 or R"=1. The
maximum mvariant set m {(S, B, I, Q R)x L' = Q}
is singleton {P;}. By Lasalle’s invariance principle,
P, is globally asymptotically stable in D, when
R,=<1.

Stability of the endemic equilibrium P*: Now, we try
to investigate the local stability of the endemic
equilibrium P'(S", E, I', Q", R"). The unique endemic
equilibrium is:

g_rl
uR,
B =2 [
uHy o Ry
S
(u+d+y,+or)
% My i
= I
Q U+
- &, Mg,
(W) (wrsel) p

For endemic analysis, we will take that
compartment class who spread the disease that i1s
P'(SLE,T,Q).
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Theorem 2: Tf R;>1, then the system Hq. 2 has a unique
equilibrium P'(S", E', I, Q") which is locally asymptotically
stable.

Proof: Linearizing system Eq. 2 at the equilibrium gives:
PS8, E, T, Q") gives:

sutol’+n) (68" +m) -n
. ol U+, s’ 0
0 v, (S, to) 0

0 0 T (pH3+E)

The characteristic equation of the B is:
F(A) = A AR +BAZ+CAD =0 4

Where:
A = plnH3uty, +28+y, +o+E)

B =-GSy, +oT+(UI+n) (Uty, U3+, +00)
(ot SHEH (UMY Y2284y +artE)

C = o8y, (Wrol+n+u+8+E ) ol(2u+ 28+, +
a+E)aSHm)(aly, (W +uty, it S+y, +a)
(A B+ EX (UM Ay, Y(2UA+ 284y, HotE)

D =-oSy, (u+al+mi(u+t3+Ernol(2u+28+y, +o+E)
(oStn)(oly, )+ 8+E)maly,y,+H{ur8+y, +o(u+3+E)

where, A-D positive constant. Now, Egq. 4 can be
expressed as a product of two quadratic equations, 1.e.,:

FL) = (A2 +ah b)Y  +dh+e)
Where:
atd = A
btad+te =B
act+bd = C
be =D

)

Since, the coefficients C and D are generally much
smaller than *A” and *B’, the quantities dand e in Eq. 5 are
much smaller than ‘a’ and ‘b’. Hence, the first
approximations of a, b, e and d, denoted by: al ,bl, el, dl

and are written as:

al = A=0 (6)
bl = B=0

e1-2. Doy (7
b B

_ BC-AD

di >0 if R >1 (8)
B

Hence, Eq. 8 can be written as:

BC-AD D
- 4=

AR+
{ X =Y 5

)

Since, each product are stable therefore, Eq. 4 is
stable if Ry>1 (Raymond, 2000).

Theorem: If R;>1; then the infected equilibrium point E"
1s globally asymptotically stable. The proof can be found
by Wang ef al. (2013) study on global stability in some
SEIR Epidemic Models.

RESULTS AND DISCUSSION

Runge-Kutta Fehlberg fourth-fifth order method is
employed to solve the system Eq. 1 and the behavior
of the susceptible, exposed, infectious and quarantined
nodes with respect to time are observed which is depicted
in Fig. 5 (plotted in MATLAB) and we observe that the
system is asymptotically stable.

The effect of Q on Tand Q on R is also observed and
15 depicted in Fig. 6 and 7 (plotted m MATLAB).
Quarantine of the nodes plays an important role for the
recovery of the nodes. When the nodes are highly
infected by different kinds of malicious objects,
quarantine is one of the remedy. The quarantined nodes
are then treated with anti-malicious software of latest
signature and are kept under constant observation. The
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Fig. 5 Dynamical behavior of the system Eq. 1

withA =03, p=01,8 =03 n1=02,y,=
03,6=02,v,=02 « =03, £ =02, time
series, 3 (t), E (1), I(t), Q(t) and R(t) (effect
of quarantine Q onI) (SEIQR epidemic model)
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Fig. 7. Effect of Quarantine nodes Q on recovered
nodes 1

more, we quarantine the most infected nodes, more is the
recovery; the lesser, we quarantine lesser is the recovery
(which is very true in real situations). These can be
observed in Fig. 6 and 7. Simulation result agrees with the
real life situation.

The basic reproduction number R; 13 obtained and
has been 1dentified as a threshold parameter. If Ry<1, the
malicious objects-free equilibrium P is globally stable in
the feasible region and the malicious objects always dies
out. ITf Ry>1, a unique endemic equilibrium P* exists and is
locally asymptotically stable.

CONCLUSION

Inspired by the biological epidemic compartment
models, an e-SEIQRS Epidemic Model for the transmission
and control of worms in computer network 1s developed.
Tt has been shown that as the number of secondary
mfection which arises from primary infection 1s =1, that 1,

basic reproductive ratio Rg>1, then epidemic starts
(that 1s, worms were able to pervade) and the worm
endemic would die out when R <1. Numerical methods are
employed to solve and simulate the system of equations
developed. Time for the mfection 1s simulated using real
parametric values and its use might help in estimating the
dynamic behavior of worms in nodes of real systems.
Using real parametric values, we were able to show from
the simulated results that the use of quarantine to control
a worm not only decreases the endemic infective class
size when R, remains above 1 but also, makes it easier to
obtain R; leading to worm’s extinction.

RECOMMENDATIONS

The future research will center on extending the
model by taking certain time-delay parameters in different
compartments.

NOMENCLATURE

MNit) = Total number of nodes attached to a computer networks and
interacting continuously with each other

3(t) = Number of susceptible nodes in the computer networks and
interacting continuously with each other

E() = Number of exposed nodes in the computer networks and interacting
continuously with each other

I(t)y = Number of infectious nodes in the computer networks and
interacting continuously with each other

Q(t) = Number of quarantine nodes in the computer networks and
interacting continuously with each other

Rit) = MNumber of recover nodes in the computer networks and interacting
continuously with each other

A = Rate at which new nodes are attached to the computer network
u = Natural death rate

& = Death rate due to attack of malicious codes

o = Per capita contact rate

vi = Rates at which nodes leave the exposed class

v, = Therates at which nodes leave infectious class

£ = Therates at which nodes leave isolated classes

The rate at which the nodes leave the infectious class and directly
enter the recovered class after treatment of antivirus software

1 = The rate at which the nodes leave the recovered class and enter the
susceptible class
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