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Abstract: In this study, we study a model for computing the Cost of Quality (CoQ) across a single-product
three-echelon serial Supply Chain (SC). The proposed model deals with the impact of various parameters such
as mspection error rate, fraction defective at suppliers and rework rate on the CoQ function as well as the overall
quality level and the effect that these internal variables has on the CoQ categories according to the PAF
classification. A Genetic Algorithm (GA) based method was developed to optimize the model for determiming
the optimal Co() pomnt that reduces costs for the whole supply chain while maintaming an overall quality level
QL. Results obtained from Genetic algorithms method are illustrated with numerical examples to highlight the
use of these parameters on SC and provide an aid for decision makers to select reliable suppliers and retailers
from among many and manage the cost of quality across the logistic route.
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INTRODUCTION

In the present business environment where quality 1s
a crucial competitive factor, providing high quality
products or services is becoming a goal of all supply
chains. Measuring the Cost of Quality (CoQ) in the
Supply Chain (SC) context 13 considered as a key
performance measurement tool to examine SC performance
in monetary terms. The CoQ) approach gives a way to
reconcile two organizations objectives which are
conflicting: maximizing quality and mmimizing cost and
then to have one objective: the cost of quality
minimization.

Based on the literature, Juran (1951) and Feignebaum
(1957) were the first researchers who demonstrated the
necessity of CoQ) measurement. Since, then many
researchers proposed quality cost models, methods and
techniques, to estimate the Co(Q mto the SC.
Schiffaverova and Thomson (2006) presented a litterature
review on CoQ Models. Their work classifies CoQ Models
into four groups of generic models. These are: P-A-F or
Crosby’s Model, opportunity cost models, process cost
models and ABC (Activity Based Costing) Models. They
concluded that the classical P-A-F approach is the most
commonly model implemented in practice where
prevention costs are the costs associated with any
activity to avoid poor quality in products and services,
appraisal costs are the costs engaged to ensure the
conformance of products and services to predefined

specifications, internal failure costs are the costs with any
activity to avoid poor quality in products and services,
appraisal costs are the costs engaged to emsure the
conformance of products and services to predefined
specifications, internal failure costs are costs resulting
from the nonconformance of product and service to the
predefined specification before delivery or shipment of
the product or service to the customer and external failure
costs are costs of nonconformance to the predefined
specification after the product or service has been
delivered to the customer (Dale and Plunkett, 1995).
According to Srivastava (208) who gives the first step
towards estimating CoQ in a Supply Chain (SC), COQ 1s
considered as the sum of the losses mceurred across a
supply chain to prevent poor quality, to ensure and
evaluate that the quality requirements are being met and
any other costs due to poor quality. Ant Colony
Optimization (ACO), Tabu Search method (TS), etc. As
observed by Altiparmak ef af. (2006) in a Supply Chain
Network (SCN), managers need to make strategic
decisions that are viable for the business to reduce costs
and maintain profit margins while the quality 1s kept at
pre-specified level, through a multi objective optimization
of Supply Chain Network Design (SCND) (Douiri et al.,
2016). Several studies have been conducted to optimize
SCND problems and there has been a growing interest of
using evolutionary algorithms to solve these problems
such as Genetic Algoritms (GA), Simulated Annealing
(SA), GA is one of the well known evolutionary

Corresponding Author: Douiri Lamiae, Department of Mechanical Engineering, FST University, Fez, Morocco
7214



J. Eng. Applied Sci., 12 (23): 7214-7222, 2017

algorithms for its easy concept, the effectiveness of this
algorithm was tested for various real life problems and is
found to be very effective. Many comparisons were set
up by researchers between GA and other methods; Seyed
Chandrasekaran et al. proposed a GA based approach to
optimize supply chain network by reducing operating
costs. He considered a four echelon system composed by
suppliers, plants, distribution centers and retailers. The
GA parameters are set with the following values where
sample size = 20, crossover = (.2, mutation = 0.02 and
number of generations = 50. The software used:
MATLAB 7.5, The experimental results showed the
effectiveness of GA to provide an optimal solution
within few minutes while running on a standard PC.
Ramezami et af. (2013) employed GA technique to optimize
a multiple products and multiple suppliers supply chain
model. The objective function consists on maximizing the
total profit for the whole supply chain, in order to
determine the products to order, the quantities, the
suppliers and the periods to order. The results obtained
were compared (global best satisfactory) with lingo
results. The GA method gives more solutions with higher
level information. Altparmak et @l (2006) suggested a
solution procedure based on GA to solve supply chain
network design problem. The researchers presented a
generalized mathematical programming model as a
multi-objective mixed-integer non-linear programming
model to optimize three objective functions: mimmizing
the total cost, maximizing the service level and maximizing
the capacity utilization balance. Castello-Villar et al. (2014)
designed and optimized a capacitated supply chain
network including quality measures; the researcher
developed a Genetic algorithm to solve the model so that
firms could improve ther profitability and quality
simultaneously. Farahani and Elahipanah (2008)
developed a genetic algorithm to optimize the total cost
and service level in a supply chain. Lin et ol (2007)
compared flexible supply chains and traditional supply
chains with a hybrid genetic algorithm and mentioned
advantages of flexible ones. Also, several studies have
been developed about optimization SC using GA by
different researchers. Gen and Syarif (2005) considered the
total cost as an objective function m their supply chain
network design, the problem was solved by a Hybrid
Genetic algorithm. Sourirajan ef al. (2009) developed a
multi objective stochastic programming approach. The
objective function 1s to mimmize safety stock costs and to
locate distribution centers in the network. They proposed
a solution method based on genetic algorithms to solve
the model. GA performs very well in terms of both quality
of solutions obtained and computational time. In this
study which 15 basically mspired by Ittner (1996) and

Castillo-Villar ef al. (2012), we will present a mathematical
model in order to forecast quality costs in three echelon
manufacturing supply cham. Model utilizes COQ as a
performance measure of all of the entities within supply
chain and uses GA as solution procedure. Our proposed
GA optimization depends on various internal parameters
such as fracton defective, error rate mspection and
rework rate.

MATERIALS AND METHODS

Problem description: In this study, we seek to determine
the required fraction defective at manufacturing and error
rate at inspection to attain the minimum total quality costs
as well as meeting a required quality level of customer.
We consider a supply chamn consisting of three tiers
namely suppliers, manufacturers and retailers. The model
computes the good and defective units at each stage of
the SC as shown in Fig. 1, in order to select one supplier
among a set of suppliers and likewise for plants and
retailers.

Notations

Sets:

o T=Setofsuppliers(i=1,..,0D)

s J=Setof manufacturers =1, ..., 1)
s K =Setofretalers (k=1,...,K)

The CoQ parameters:

s+ W =No. of components

* Y, = Fraction defective at supplier 1

* Y, =Fraction defective at retailer k

+  Dem = Customer Demand

»  Af=Fixed costs for prevention activities

*  Av = Variable costs for prevention activities

»  Bf = Fixed costs of inspection

s Bv = Variable costs of inspection

+  Cf=Fixed internal failure costs

»  Cs = Loss due to failure of purchased components
*  Cm = Direct manufacturing cost per rework element
+  Cr=Rework cost per item

+ @ =Rework rate

»  Cg = Cost per defective item repaired or replaced
» K = Coefficient of Taguchi loss function

¢ Pl =Price per sold item

¢ P2 =Price per ‘sold as defective’ item

Decision variables: Decision variables are the variable
which could vary during the time interval and could have
a critical impact on the objective function, these variables
change if the process characteristics change. The model
decision variables are defined as follows:
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Fig. 1: CoQ Model flowchart (Castillo-Villar ef al., 2014)
¢ Y, = Fraction defective at manufacturing plant ]
¢ Y, = Inspection error rate at the manufacturing plant
i
Expressions
Tier 1: Supplier
Good Component (GC):
GC=(1-Y,)W (1)
Bad Component (BC):

BC=Y, W 2

Tier 2: Manufacturer

Good component with successful Manufacture (GgM):

GgM = (1Y, )W (1-Y,)) ®
Good component with failed Manufacture (GbM):

GbM ={1-Y, )WY 4

2l

Bad component with a successful Manufacture (BgM):

BgM = Y, W (1-Y,) ()
Bad component with a failed Manufacture (BbM):
BbM =Y, WY, (6)
Good product after successful Rework (GaR):

GaR :(P(l'yh)W[(I_Ym)YpJJrYSJ @)

Sold as Defective products (SaD):
SaD = (1-@)(1-Y, )W [(1-Y, ) Y+ Y, ] (8)

No. of bad products after entering the manufacturing
process (BeGOC):

BeGC = Y, W[(I-Y,)Y,+Y, | %)

Tier 3: Retailer
No. of Good products after the Retailer (GaRe):

(7w (1)

GaRe = (I-Yrk)[ } (10)

(p(l_YIj )W ((I'Ysi )YPJ+Y51)

No. of Bad products after the Retailer (BaRe):

BaRe - Y, {(1-Ysi)w (1-YpJ)+(p(1-YIJ)+} an

W [(1-Y51)YPJ+Y51]

Quality cost function

Prevention Costs (CP): Prevention costs are related to the
number of good product and are divided nto three
components: supplier prevention activities, manufacturer
prevention activities and mutual prevention activities
between supplier and manufacturer. The overall quality
level will ncrease as well as the number of good products
increases.

Prevention costs include: System development, quality
engineering, training, Statistical Process Control (SPC),
plarming, implementation and controlling quality system
in the organization, etc. Prevention costs are given by
Eq. 12:

CP = Af+AV| (1Y )W (1-Y ) | (12)

Appraisal Costs (CA): Previous studies demonstrated the
relationship between appraisal costs and inspection error
rate. Thus, the appraisal cost increases when inspection
1s more accurate. The appraisal cost includes: Test and
inspection of purchased materials, final product testing
and inspection, Supervision of inspecting activities,
Maintenance of test equipment, etc. and it is given by
Eq. 13

CA = Bf+BvxW [ (1-Y, )+(1-Y, )| (13)

Where:

Bf = The fixed cost

Bv = The variable cost

W = The No. of items going throw the inspection system
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Internal Failure Costs (CIF): These are the costs incurred
in the supply chain as a result of manufacturing defective
products. They are calculated based on the probable
amount of defective products at each tier of supply
chain and their relative rework costs. We can cite as for
example: cost of scrap, rework, reinspection and retesting
of reworked products, down time caused by quality
problems, analysis of the cause of defects in the
production, debugging software errors, etc. internal failure
cost is given by Eq. 14:

CIF = Cf+ (Cm+Cr)g(1-Y, )GbM+(Cs+Cm+Cr)+(14)
@(1-Y, }(BgM+BbM)+(P1-P2)SaD

External Failure Costs (CEF): The external failure cost in
our model is composed by two terms. The first term
models the cost related to customer returns which involve
the action to either repair or replace the defective item.
The second term models losses owing to defective items
(e.g., complaints from customers, warranty claims, loss of
reputation, ete.) and 1s based on the Taguchi (Quigley and
MecNamara, 1992) loss function concept. The external
failure cost is given by the Eq. 15:

CEF =Cy, [BaRe+BeGC] +k( Y, )’ (15)

Where:

k= The loss constant coefficient

Y.y = The relative value of the quality characteristic to
compute the loss for the supply chain by
subtracting the target value or lower bound from
the current overall percentage defective:

[ (BaRe+BcGC+SaD/Dem) |-

= x100% (16}
[ Yo +Y, (19)(1-Y, ) ]

rel

Total CoQ function: The total COQ is computed as the
sum of the prevention, appraisal and internal and external
failure expressions as given by:

CoQ = CPHCA+C+C,, (17

Quality level

We assume that the parameter QL: Overall quality level
that represents SC quality is the proportion of good
products among all products delivered to final customers.
QL is given by :

(1-Y51)(1-Yp])+tp(1-Yn) _ (18

QL = (I-Yr )
- (I_Ysi)ij+(p(1_Ylj)Ysi

Initial population

——P Evaluation

Selection

]

|: Crossover and mutation :l

New population

I

Exit criteria
(global best
satisfaction)

Meet stop
criteria

Fig. 2: A optimization flowchart (Holland and Arbor, 1975)

Developing a GA based solution: Genetic Algorithm (GA)
is adaptive heuristic search algorithm based on the
evolutionary process of natural selection and genetics.
The GA techmque was developed by Holland and Arbor
(1975) and his collaborators in the 1970s. Tt represents an
intelligent exploitation of random search used to solve
large scale conventional combinatorial optimization
problems. In other words, GA simulates the survival of the
fittest among individuals (candidates solutions) over
consecutive generations for an optimization problem, each
candidate solution 1s represented by character string
which 1s analogous to the chromosome. A population of
these individuals in this case composed of two variables
Y,; and Y presented in a string-bit block and a fitness
score 13 assigned to each selution that gives mformation
about the relative merit of each individual g* (Y, Y,;). GA
operators such as: selection, crossover and mutation are
applied to these individuals to explore new solution
space. In this way, solutions tend to improve over
successive generations leading to optimal or near optimal
solution. The basic concept of the algorithm can be
represented as follows (Fig. 2).

Individual representation: Y, and Y, are real numbers
which are converted to the string-bit block. This crucial
encoding phase allows us to apply crossover and
mutation operations to the individuals. Once the GA
operators are applied the binary string are reconverted
finally to decimal base. Equation 19 allows us to find the
corresponding number of x. The x can be Y, or Y »:

< _(x+2)(22;'1) (19)

Where 2% and 4 depend on the required precision. x'
is then converted to a binary form. For example, a
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solution-string block for a fraction defective of 0.729 is
obtained by inserting this value into Eq. 19 above as x and
solving for x*.The x” 1s then transformed into a binary
string as follows:

0.729 = -24x'%

)

n

a3
-1
X' ={0.729+2) (21 2861560.5 = 2861561)
4

The bmary form of 2861561-~1010111010100111111001.

Initialization: This stage aims to generate feasible
solutions space of a desired size (popsize). Y; and Y,; are
generated randomly between the limits 0.05 and 0.95.

Evaluation: The objective of this step is affecting a score
to each individual solution (Y, and Y,) in order to
mimmize quality cost functon To do so, a
competitiveness score 1s assigned to each solution
calculated as follows:

g'(s) =i (s) (20)
Where:
fi(s) = The objective function of a solution (Yj, Y,)
f... = The least function value of the current solution

space

A probability selection Pi is then calculated with the
following equation:
fis)

popsize

Pi=——
w00

2D

Selection: According to Egelese (Collins, 1988), there are
six alternatives selection schemes. In this researchwe
have opted for the remainder stochastic sampling without
of replacement strategy. A fractional part ei is calculated
as follows:
S 1) N 22)
© Y f(s)/ popsize

Tt represents the probability of each string to have
copies in the next generations.

Genetic operators

Crossover: This operation consists of taking two
chromosomes (called parents) and producing child
individuals from them. It 1s a mechamsm for diversification
that encourages GA to examine unvisited regions. When
two individuals are selected, the program generates two

random cut points of the block string and extracts the
segment from these two individuals. To achieve this
operation, segments are exchanged and finally two new
individuals are produced. The operation is done with a
Crossover Probability (PC). Hxample: the crossover
operator generates two new strings as follows (where ()
represents the cross positions):

*  String 1: 0000000000000001~001"110
*  String 2: 0000000000000001~101"100

After
strings are:

crossover operation, the newly created

+  New String 1: 000000000000001"101"110
+  New String 2: 000000000000001~001"100

Mutation: This operation allows the algorithm to explore
the space of solutions for any imitial selution space and
guarantees the possibility of avoiding the local minima by
preventing the population of individuals from becoming
too smnilar to each other. The mutation is performed with
a probability Pm. If an individual 15 selected, a random
point 1s generated and the bit
transformed.

concerned  1s

RESULTS AND DISCUSSION

Computational results: The aim of this study is to explore
the effect of supplier’s fraction defective Y the fract
1on defective at the retailer Y., as well as Rework rate ¢ on
Cost of Quality (CoQ). As imitiated in Castillo-Villar ef al.
(2012), this study allows us to determine which of these
parameters has a considerable impact on CoQ. To do so,
we propose an optimization tool based on GA wich 1s
developed on Python 3.0 and it is inspired from works
developed by Tabri et al. (2013). We regroup in Table 1
the values of various parameters used to develop the GA.
We use the set of data reported in Tttner research,
Table 2 for a quality level between 0.1 and 0.7 as the base
for the numerical examples (Fig. 3).

The impact of decision variables on QL constraint: This
study aims at presenting the QL curves depending on Y
and Y. The optimisation of the model presented in Eq. 17
subject to the quality constraint (QL = 1) were achieved in
terms of the range of the quality level which 1s delimited
by the lower bound and the upper bound on QL. The
parameters Y,, Y, and & are varied to specify QL limits
according to Y, and Y, The upper bound is attained
when both Y and Y; are zero in Eq. 18, in other words,
when there are zero defects at manufacture and no error at
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Table 1: Input fixed parameters for the GA

Parameters Values
Population size (popsize) 20
No. of iterations 200
Crosseover rate (peross) 0.7
Mutation rate (pmutate) 0.2
Table 2: Parameters used to generate GA instances

Parameters Values
W 2000
Bv 5

Cm 5

Cs 22.5
Cr 70

Phi 0.7

Cs 22.5
P1 1.2

Pl 228.8
P2 Pl1/4
P2 1/4%P1
Af 5000
K 1/10
Bf 15000
Ces 57.2
ct 10000
Y. 0.05

K 1110
Y 0.05
W 50

Av 5

Cep 5

mspection. The lower bound is attamned when both Y,
and Y, are one in Eq. 18. We show in Fig. 6a the quality
level plots for three levels of Y.

It can be observed that when Y, mcreases the
optimal quality level decreases. When the supplier
fraction defective 1s small, there 1s a need to unprove the
manufacturing  process by iumproving prevention
activities. Figure 6b shows that as the fraction defective
at retailer increases, the maximum overall quality level
attained by the logistic route decreases. For Y, = 0.2 the
lower bound of QL 1s on 0.6 where QL 1s <1-Y .. This can
be explained by the relationship between Y, and the good
products delivered to the customers. It can be seen also
from Fig. 6¢ that increasing the rework rate will not return
significant benefits to the logistic route.

Supplier’s fraction defective (Y ) impact: First, we study
the impact of supplier’s fraction defective on the COQ
curves. To simplify the model, we suppose that one
supplier is selected from among many. In this first
example, we vary the fraction defective at supplier
between 0.1 (Fig. 4a) and 0.7 (Fig. 4b).

Tn order to meet a given quality level (1) and minimize
the total cost of quality, we optimize the parameters Y,
and Y; which are the internal decision variables of our
model; Fig. 4 presents the curves associated with each
cost category: the curve COQ represents the total cost,
CP the appraisal costs, CIF the mternal failure costs and
Cpr 18 the external failure costs curve.

10 0.8 0.6 04 0.2 0

©

QL

i 075 01 02 0304

Yo

Fig. 3: QL level plots for three levels of Y, Y, and @: a)
Phi = 03,05 07and Y, =02, Y; =02, b)
Y, =03, 05 07 and Y, = 0.1, Phi = 0.2 and
¢)Y,=02,04,06and Y, =01, Phi=0.2

Figure 4 shows that the greater the supplier’s fraction
defective rate, the slower is QL. which minimizes the total
CoQ. In other words, if we want to meet the fixed QL. we
have to invest more on appraisal and internal failure
activities, this 1s due to the quantity of bad components
received from the supplier. The minimal CoQ point is
obtained for QL = 0.6 and 0.35 when Y, = 0.1 and 0.5,
respectively and the CoQ becomes important because the
internal failure costs in this case merease considerably.
This result confirms that when selecting suppliers, it is
important to take into account the fraction defective in
order to avoid inspection and rework process and to
meet the quality requirements at mimmum cost. We
conclude that the supplier fraction defective has an
economic impact on the supply chain by avoiding
decisions based solely on price and reducing the total
quality costs that achieve a high quality level m the
supply chain.

7219



J. Eng. Applied Sci., 12 (23): 7214-7222, 2017

@ ,x10°
T e CA = CP
| ) —--C, — C;
L €0Q
P
2
Z 6
(=3
O
4_
24
'W
A
0 Ll L Ll ¥ Ll 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
by 125 10* Quality level
104
2
z
&)
0 T T T T T T T 1
0.1 0.15 020 025 030 035 040 045 050
Quality level
Fig. 4: CoQ curves for Y,: a) 0.1 and b) 0.5
(@) 12519
2
Z
)
0 Ll L T T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Quality level
|
by 12310
10

Quality level

Fig. 5. CoQ curves for Y, a)0.1 andb) 0.4

Retailer’s fraction defective (Y,) impact: Figure 5
presents the results obtained when varying Y, for two

Cost ($)

Cost ($)
[«)}

T T T T T 1
025 030 035 040 045 050

Quality level

Fig. 6: CoQQ curves for @: a) 0.2 and b) 0.7

0 T T
0.10 0.15 0.20

values: 0.1 and 0.4. The results show that like Y, Y, has
a negative effect on CoQ curve. In fact, when the fraction
defective at retailer Y, increases, the maximum overall
quality level attained by the logistic route decreases. This
is due to the number of good products delivered to the
final customers and its direct dependency on the fraction
defective at retailer. For example when Y, increase from
0.1-0.4, the QL achieve L at 0.9 and 0.76, respectively and
CoQ also increases to attain 5.2x104 for Y, = 0.4
Therefore, in order to mimmize the total cost of quality,
managers must take into account when selecting a retailer,
its fraction defective to achieve a high quality level in the
supply chain.

Rework rate @ impact: The third parameter studied in
thus study 1s the rework rate @. In this example @ 1s varied
from 0.2-0.7. Figure & gives the CoQ for these two cases.
Tt can be seen clearly that the curves of Fig. Sa and b are
similar. To attain any quality level, we can choose many
inspection error rates for one value of supplier fraction
defective. The products resulting from rework process are:
good products after successful Rework (GaR) (Eq. 7) and
products Sold as Defective (3aD) (Eq. 8). It means that
even 1f managers mvest more n appraisal activities it will
not greatly influence the cost of quality especially for low
rework rate values because few products will be
reworked and most products will be SaD at low price
P2 that 13 en internal failure cost. Only investments in

7220



J. Eng. Applied Sci., 12 (23): 7214-7222, 2017

Table 3: Results for the various parameteres

Variables/QL 0.10 0.15 0.20 0.25 0.30 0.35 0.40 .45 0.50 0.55 0.60 (.65
Y =05

Y5 94.9 95.0 94.8 94.9 94.9 91.9 65.5 351 11.5

Yy 74.4 60.3 45.3 307 16.3 5.0 5.2 5.2 5.0

Y,=0.1

Y5 94.9 94.7 95.0 94.8 94.7 94.8 94.8 94.7 94.9 94.9 95.0 83.0
Y 85.8 77.7 69.5 6l.5 533 451 37.0 289 20.5 12.7 5.2 5.0
Y= 04

Y5 94.8 94.9 94.9 95.0 922 61.7 29.9

Yy 69.6 52.3 353 188 53 5.1 5.2

Y= 0.1

Y5 95.0 94.9 94.9 94.8 95.0 94.9 95.0 91.9 71.0 49.9 28.8 7.8
Y 81.2 70.0 586 47.2 35.7 24.4 12.9 51 51 5.0 5.2 5.0
=02

Y5 95.0 94.9 94.9 94.9 94.9 o918 94.6 80.7 28.0

Yy 78.5 67.3 56.1 45.0 33.7 22.5 11.5 5.0 5.0

=107

Y5 95.0 94.9 94.8 94.9 94.9 95.0 94.8 94.8 79.1

Yy 33.3 71.6 60.3 48.6 37.2 25.6 14.5 5.0 5.0

prevention activities will guarantee that good products CONCLUSION

reach the retailer. In conclusion, rework rate did not
greatly influence cost of quality but when @ decreases,
the inspection system will not return important benefits.

Discussion of PAF cost categories evolution: In this
study, the effect that decision variables and CoQ internal
parameters has on the CoQ categories (CA, CP, Cj; and
Cpr) curves are discussed.

We report 1n Table 3, the results obtamned
when variying these parameters until finding the maximum
QL value. External failure cost decreases as QL. increases
and this 13 due to decreasing values of fraction defective
which means that more and more best items reach clients
with best quality. Cp; increases as inspection error rate
decreases. This is due to the considerably increased costs
of the quantity of defective products as well as operation
failure costs and purchasing failure cost which means that
more inspection at manufacturing 1s needed in this
situation to guarantee that good products reach the
retailer.

When Y, and Y, increase, the optimal quality level
which minimises the total COQ decreases. Tt attains 0.35
for Y; = 91.9and Y; = 5 and it equals to 0.65 for Y;; = 83
and Y, = 5. At these QL poimts, CA start to increase
considerably ans this i1s due to the need for a greater
investment in appraisal activitites since more bad
components are received from the supplier.

The prevention costs increases as the minimum
quality level increases. As described analytically in Eq. 12,
Prevention costs are related to the mumber of good
products shipped from suppliers (Y, and the
manufacturer prevention activities (Y,). As these two
elements increase, at the mmimum quality level, CA start
to increase which justify the need to invest more in
appraisal activities.

This study uses three quality variables and study
what impact each has on quality costs and quality level
across a single-product three-echelon supply chain. A
Genetic algorithm based procedure was developed to
optimize the model and the solutions was examined
and validated against manufacturing supply chain
data.

Based on the results, there 18 a relationship
between supplier fraction defective and the optimal
quality level as well as between retailer fraction
defective and the quality level achieved. Furthermore,
according to the data analysis results, the system
decision variables has an impact on PAF cost
computing  quality
determining the optimal COQ point. Therefore, mcluding
quality costs in supply chain modeling can provide an aid
for managers for taking internal operational decisions
considering the defective rates at each stage of the
supply chain.

categories  when costs  and

SUGGESTIONS

Future research involves the development of hybrid
solution method that combines two metaheuristics
procedures such as Genetic algorithms and simulated
annealing. Another future research includes extending the
model to include more levels in the supply chain.
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