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Abstract: The aim of this study is to study the convergence of Noor iterative procedure (a three-step

procedure) for non-expansive mappings on Hadamard manifolds. The result generalizes several comparable

results n the framework of Hadamard marfolds.
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INTRODUCTION

Most of the results of non-expansive mappings have
been obtained in normed linear spaces. The asymptotic
behaviour of non-expansive mapping 1s an active research
area 1n nonlinear functional analysis. The most important
analytical problem is the existence of fixed points for
nonlinear mapping T, i.e., solutions of x = T(x). Banach
contraction principle states that the sequence of Picard
iterates {1"(x)} converges strongly to a fixed point of T
for any xeX, if T is a contraction defined on a complete
metric space X, one can find a huge literature about fixed
points with different type of mappings (Goebel and Kirk,
1990, Kirk and Sims, 2001).

Mann (1953) introduced the most general iterative
formula for approximation of fixed points of non-expansive
mapping which 18 called Krasnoselskii-Mann iterative
procedure. This procedure has been extensively studied
by many researchers (Xu, 2002; Falset et af, 2001;
Ishikawa, 1976; Reich, 1979; Kim and Xu, 2005; Xu and
Noor, 2002). Then, Halpern (1967) gave an iterative
procedure for a fixed pomt in 1967. Further, Ishikawa
(1974), iteration procedure for approximating fixed points
in Hilbert space has been introduced by Tshikawa (1974).
Tan and Xu (1993) showed weak and strong convergence
of Ishikawa iterative procedure for non-expansive
mappings.

Noor (2000) introduced a three-step iterative process
and studied the approximate solution of variational
inclusion in Hilbert spaces. Many researchers studied this
iteration process to approximate fixed points for various
classes of nonlinear operators (Xu, 2002; Khan and
Hussain, 2008; Suantai, 2005; Cho et af., 2004). In many
respects, it 15 observed that a three-step iterative process
is better than a two-step and a one-step iterative process
for finding numerical results under different conditions
(Abbas and Nazir, 2014; Glowinski and Tallec, 1989,

Haubruge et al., 1998; Cho et al., 2004). Thus, we found
that 1t 18 important to study three-step iterative processes
in solving various numerical problems in the field of pure
and applied sciences.

Goebel and Reich (1984) studied the behaviour of the
sequence of Picard iterates in hyperbolic metric spaces.
Li et al. (2010) studied the Mann and Halpern iterative
algorithms for non-expansive mappings on Hadamard
manifolds, i.e., complete simply connected Riemannian
manifolds of non-positive sectional curvature. Motivated
by the results by Li ef al (2010), we studied the
Ishikawa iteration procedure for approximating a fixed
point of non-expansive mappings in Hadamard mamfolds
(Chugh et af., 2014).

MATERIALS AND METHODS

Preliminaries: TLet peM, where M is a connected
m-dimensional Riemanmean manifold. A Riemanman
manifold is a Riemannian metric ¢, .} with the
corresponding norm denoted by |.|. We denote the
tangent space of M at p by T,M. We define the length of
a plecewise smooth curve, ¢ [a, b M joming p-q
(1.e., c(a) = pand c(b) = q), by using the metric as:

c'(t)Hdt

L(c):_b[

a

Then, the Riemannian distance d(p, q) 18 defined to
be the mmimal length over the set of all such curves
joining p to q which mduces the original topology on M
Let ¢ be a smooth curve and A be the Levi-Civita
connection associated to (M, {,} ). A smoocth vector field
X along ¢ 1s said to be parallel if V.X = 0. If ¢’ 15 parallel,
then ¢ is a geodesic and here ||¢’|| is a constant. A
geodesic joining p to g in M is said to be minimal
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geodesic if its length equals d(p, q). A geodesic triangle.
A(p,, p; ps) of a Riemannian manifold is a set consisting
of three points p,, p, and p; and three mimmal geodesic
joimng p, to p., with1=1, 2, 3 (mod 3).

A Riemannian manifold is complete if for any
peM, all geodesics emanating from p are defined for
all -eo<t<eo. By the Hopf-Rinow theorem we know that if M
15 complete then any pair of points in M can be joined by
a minimizing geodesic. Thus, M, d is a complete metric
space and bounded closed subsets are compact.

Now, the exponential map exp,: T,M-M at peM is
such that exp,v = v,(1, p) for each veT M, where y(.) = yv
(., p) 1s the geodesic starting at p with velocity v. Then,
exp, tv = 7,(t, p) for each real number t (Eq. 1).

Definition (Eq. 1): By Sakai (1996), a complete sumply
connected Riemannian manifold of non-positive sectional
curvature is called a Hadamard Manifold. Now, we present
some basic results. We assume that M 1s a m-dimensional
Hadamard mamifold.

Proposition (Eq. 1): By Sakai (1996), let peM. Then, exp,:
T,M-M is a diffeomorphism and for any two points p,
qeM there exists a unique normalized geodesic joimng p-q
which is in fact a minimal geodesic. This result shows that
M has the topology and differential structure similar to R®.
Thus, Hadamard manifolds and Euclidean spaces have
some similar geometrical properties.

Proposition (Eq. 2): By Sakai (1996) (comparison theorem
for triangles). Let A(p,, p;, p;) be a geodesic triangle. For
each1=1,2, 3 (moed 3) by v;: [0, 1]]-M the geodesic joimng
pitop.andsetl; =L (y,), &, = Z(y; (O)-y . (1)), Then:

0, 0L, 0L, ST (1

12412, - 211

i+ “hlin

cosa,,, <12, (2)

In terms of the distance and the exponential map, the
inequality (Eq. 2) can be rewritten as:

& (P P )+ (Pors Piva) —2{85 1 P 895 P ) S8 (Ps )
(3)

Since:
(exp;ilﬂ p1’ exp;iln p1+2) = d(pp pi+1) d(pi+1 H pi+2 ) COSOLHI

Proposition (Eq. 3): By Sakai (1996), a subset KM 15 said
to be convex if for any two points p and ¢ in K, the
geodesic joining p-q is contained in K, i.e., if y: [a, b]-M

is a geodesic such that: p = v(a) and g = y(b), then ((1-t)
att bye. K for all te[0, 1]. From now K will denote a
nonempty, closed and convex set in M.

A real valued function f defined on M is said to be
convex if for any geodesic vy of M, the composition
function foy: R-R is convex that is:

(Fep)(tar(1-t)b) <t(foy)a)+(1-t)
(fon)(b) forany a,be Rand 0 <t <1

Proposition (4): By Sakai (1996), let d MxM-R be a
distance function. Then, d 18 a convex function with
respect to the product Riemannian metric, i.e., given any
pair of geodesics v,: [0, 1]-M and vy, [0, 1]-M the
following inequality holds for all te[0, 1]:

d(yl(t),y2 (t)) <(1-1) d(y1 (0).7, (0))+td(y1 (1),7, (1))

In particular for each peM, the function d (., p): M-R
is a convex function. Let Py denote the projection onto K
defined by:

Py (p) = {pu eK d(p, pu)éd(p, q) foral qe K},fora]l peM

Definition (Eq. 2): By Ferreira and Oliveira (2002), let X be
a complete metric space and Fo3{ be a nonempty set. A
sequence {x,}cX 1s called Fejer convergent to F if:

d(Xn+1=Y)Sd(xn,y) forall ye Fandn =0

Lemma (Eq. 1): By Ferreira and Oliveira (2002), let X be a
complete metric space. If {x,}cX is a Fejer convergent to
a nonempty set FcX, then {x} 1s bounded. Moreover, if
a cluster point x of {x,} belongs to F, then {x,} converges
to x.

Definition (Eq. 3): By Noor (2000), let x,e X be arbitrary. If
the sequence [x,]”  satisfies the condition:

Xn+1 = C“"nxn+(1 - G‘n )TYn
¥u= ann + (1 - Bn )Tzn (4)
z, =X, +(1-A )Tx,

forn=20,1,2, 3, ..., then this 1s called the Noor iteration,
where {o,}, {P.} and {A} are the sequences such that
O<{c.}, {nP}, {An} <1 for all positive integers n.

In the next study, we study the convergence of Noor
iteration for non-expansive smappmgs m Hadamard
manifold. The Noor iteration in Hadamard manifolds M is
as follows:
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)

a,)exp, T(y,
) )
)

)
)

Z, =exp, ((1 ~A, ) exp, T(x,

for all n=0 where O0<{e.}, {P.},{4.3<1 and satisfy the
following condition:

RESULTS AND DISCUSSION

Theorem (Eq. 7): Let K be a closed convex subset of M
and T: K~K a non-expansive mapping with F = Fix (T)#d.
Suppose xeM. M and let {x,} be the sequence generated
by the algorithm (Eq. 5) and {a,}, {B.} and {4, }(0, 1)
satisfy the condition (Eq. 6). Then {x,} converges to a
fixed pomnt of T.

Proof: We know that K 15 a closed convex subset of M,
thus, K 1s a complete metric space. Using Lemma (Eq. 1),
it is sufficient to prove that {x,} is Fejer convergent to F
and that all cluster points of {x;} belong to F. Now we
suppose that n<0 and peF be fixed and v,, v,and v ;
denote the geodesic joining x, to T (3,), v» to T (z)
and z, to T(x,). Then, x,+1 = v,(1-¢,), v, = 2(1-pn)
and z, = 3(1-4,). Now using the convexity of distance
function and the non-expansivity of T, we have:

d (Xnﬂ, p) = d(\(1 (1 -, ),p) = otnd(xn,p)Jr

(7)
(1-0t,)d(Ty,.p) € o, d(x,.p) + (1, )d(y,.p)
and:

d(y,.p) =d(v.(1-B,).p) <B.d(x,.p) + ®
(1-B.)d(Tz,.p) <B,d(x,.p)+ (1-B,)d(z,.p)
d(z,.p) = d{y,(1-2,).p) <A d(x..p}+
(1-2,)d(Tx,.p) <A, d{x,.p)+(1-},) ©)

d(xn,p)id(zn,p)id( )

By Eq. 7-9, we obtam:

d(xm,p)id(xn,p)

Hence, x, is a Fejer convergent to F. Let x be a cluster
pomt of {x.}. Then, there exists a subsequence {ry} ofn
such that =, = Next, we prove:

lim, ., d(xn,Txn) =0 (10)

—

For this, let peF and n=0. Let A(x,, q, p) be the
geodesic triangle with vertices x,, q = Ty, and p. From
Lemma (Eq. 9) there exists a comparison triangle A(x’,, ,
p’) which conserves the length of edge. Also, we
have x,,, = v, 1(1-a,). Setx’,,, = a.x" 1 )Ty, = ox"+
(1-o)q as its comparison point. By Lemma (Eq. 11):

& (X, P) Sl Pl = 00 (!, p ) (1, )
(a-p")IF =, [Ix,-pIf +{1-0, ) [ q"-p -, (1-ct,
- = o d* (% p) +{1-or, )d* Ty, p ), (10t )d°
(% Ty, ) S0, d*(x.p)+ (10, )d* (y,.p)-0r, (1-0t, )
dz(xn,Tyn)

o, |

(1)

Now, let A(x,, 1, p) the geodesic triangle with vertices

X, 1 = Tz, and p. From Lemma (Eq. 9) there exists a
comparison triangle A(x’,, I’, p°) which conserves the
length of edge. Also, we have y, = v,(1-p,) and set

y’ = an,n+(1_8n)TZ’n = an’nJr(l _Bn)TZ’n = an,n+(1_ﬁn)1,
similarly, we can obtain:

d*(y,.p) lly’, pIf =B, (x', p')+(1-B,)
(I-p)[F =B, 1" -pIF+ (1B, ) 11" -

B (1-8, ) IIx", ' =B, (x,.p)+(1-B, )4’
(T7,p) B, (1B, ) 4* (x,, Tz, ) <B,d*(x,.p) +
(18, )" (2,.p) B, (1-B, )d° (x,. Tz, )

(12)

Now, let A(x, m, p) be the geodesic triangle with
vertices x,, m = Tx, and p. From Lemma (Eq. 9), there
exists a comparison triangle A(x’,, m’, p*) which conserves
the length of edge. Also, we have z, = y4(1-A,) and set
Yy = A H1-A)Tx, = Ax” #(1-A ). similarly, we can
obtain:

d*(z,.p) gl 2, P =h,(x",p)+(1),)
(m'-p) [ =, || x ' PIF+(12, ) m'p' | -
A (1) X, -m| P = d? (x,p) + (1A, )d?
(Txn,p)—k (1-l )dz(x Txn)Slndz(xn,p)+
(12, )d* (x,.p)-, (10, )d° (x,.Tx, ) <
d*(x,.p)-k, (1, )d*(x,. Tx, )
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Combining (Eq. 12 and 13 btain: =
ombining (Eq. 12 and 13), we obtain E (1o, )d*(x,.Ty, >b20t (Lo, ) ===

d*(y,.p) <B,d* (x,.p) +{1-B,) fet
(@ (x,.p) h, (1, ) (x,.Tx, ) |- and:

B, (1B, )4’ (x,.Tz, ) <B.d* (x,.p)+

(1-B, ) (x,.p)-, (11, )(1-B, )& (14)
(x,.Tx, )8, (1B,)d*(x,.Tz,) =d

%,p)h, (12 )(1-B, )d* (%, Tx, -
(Bn(ll-)ﬁ),n)dz((xn,)T(zn)) ( | EK (12, )(10r, )R, ) (%, Tx, ) 2

agkn(l-an)(l—ﬁ

?Ma
=S
=

xTz i

Combiming (Eq. 11 and 14):

which is a contradiction with Eq. 15. On the other hand,
the non-expansivity of T and convexity of the distance

& (%000 p) o d (x,.p) H1, )
)

dz(XwP 'Ah(l%n)(l'ﬁn)dz(&sn%)' i function, implies that:
B (HA)d (.. T2,
(k4 T Sk, B4, B R R R
;\(n(1_;\‘11)(1_0%)(1_8)dz(xn TXn) (1 n)(l ) d(Xn,,1 T )+d Xn,Xn+1)SOLnd(Xn,T Xn))-‘r(l-otn)
(T2, )0, (1, )& (. Ty, ) S (x,.p) A (194) d{T(y, ), T(x,)) Sod{x,, T(x, )} +(1-e, )d
(o )M )f (3, T, )-R, (1, )04 ) . Tz, )- (T(yn)axn)+( <, )d(y,. T(x, )]
o, {1404, ) (x,, Ty, )
now
it follows that: d(Tyn, n)SB d(Tz X) ( B) ( n)g
(1)1 (106 (5T () , T AT =T
and:
(1o )d*(x,.T7, )0, (1ot )d” (x,,Ty, ) < (1) ATz, x,) <2 d(x,, x,)+(19, }4(Tx,, x, ) <
4 (., P} (%,1.7) Md(x,.x, )+ (1, )d(x,. x,) <d{x,. x,)
and:
i%(l‘an)dz(xn»Tyn) < Therefore:
SR (1, ) (1B, ) (x, Tz, ) <= R
S o e (1o, )d(x,.T(x, ) £ d(x,.T(x,))
S (1 ) (10 Y18, Jd2 (.. oo
nZ=1 n(l n)(l Oln)(l Bn) (Xn Txn)< This means that {d(x,, T(x,)}1s a monotone sequence.
Combining this and (Eq. 15) we get that (Eq. 9) holds.
which implies that: Then, since:
liminf d(x,,Ty,) = 0 liminfd(x,,T7,) = 0 and a(x T(x))= d(x.x, Jrafx,. T(x, )}
liminf d(x,.Tx,) =0 e a1 (x, )} T(x))=20(x,,. x)+(x,.. T(x, )]

by taking limit, we deduce that d(x, T(x)) = 0 which means
because otherwise d(x, T{x))=a, dix, T(y)2b and  thatxeFix(T). Now, we obtain some results which are the
d(x,, T(z V=zc for alln=0 and for some a, b, ¢>0 and then: consequences of the above result.
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Corollary (Eq. 8): Let K be a closed convex subset of M
and T: K~K a non-expansive mapping with F = Fix(T) # o.
Let x,¢ M and let {x,} be the sequence generated by the
algorithm:

X,., =exp, (I-o, Jexp] T(y,)

v, =exp, (1B, Jexp; T(x,)

for all n=0, where 0 <{e,}, {P,.t<1. Then, x, converges to
a fixed point of T.

Proof: To obtain the desired result put A, = 0 in theorem
(Eq. 7).

Corollary (Eq. 9): Let K be a closed convex subset of M
and T: K~K a non-expansive mapping with F = Fix(T)#o
suppose that {¢,}<(0, 1) satisfy the condition:

ni:llocn(l-ocn) =oo

Let x,cM and let {x.} be the sequence generated by
the algorithm:

X, =exp, (l-o Jexp] T(x,) foralln=0

Then, {x,} converges to a fixed point of T.

Proof: To obtain the desired result put B, = 4, = 0 in
theorem (Eq. 7).

CONCLUSION

In the recent years, some algorithms for solving
variational inequalities and minimization problems have
been extended from the Hilbert space framework to the
more general setting of Riemammuan manifolds. The
convergence of Mann, Halpern and Islukawa iterative
procedures to a fixed point for non-expansive mappings
on Hadamard manifolds has been studied (DoCarmo,
1992, Sakai, 1996).
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