Tournal of Engineering and Applied Sciences 12 (23): 7189-7183, 2017
ISSN: 1816-949X
© Medwell Journals, 2017

Quaternary Defense Mechanism Handling Predicaments in Cuckoo Hashing

'D. Seethalakshmi and *G.M. Nasira
'Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
"Department of Computer Applications, Chikkanna Government Arts College,
Tirupur, Tamil Nadu, India

Abstract: The rapid boom of amount of records, cloud computing servers required to store and analyzes huge
amounts of excessive-dimensional and unstructured data. Cuckoo hashing schemes were broadly used in
actual-world cloud-related programs. However, because of the capable hash collisions, the Cuckoo hashing
suffers from limitless loops and high nsertion latency. According to the potentiality the collision in Cuckoo
hashing has recursive loops with entire latency insertion. The concurrency problem can have effective insertion
of services through query based on its high performance of cloud commodity servers. In the proposed study,
we divide hashing into four threads invokes the quaternary thread with separate threads to handle those hot
and cold buckets and the other two threads monitors and handles predicaments occurred dynamically. Thus,
n the proposed by segregating into four threads and each thread will handle hot, cold buckets and one thread
for complete momnitoring of transmissions and the other thread will help m overcomimng attack. If any attack
found then the data from that particular commodity server transfers to secured server and the connection will
be disconnected thus to provide strong security.

Key words: Cloud computing data, Cuckoo hashing, cloud commaodity server, quaternary thread, hot and cold

buckets, predicaments

INTRODUCTION

The big data cloud computing services processing
and analysis of huge amount of data with efficient
(Turmner et al, 2014) As
mnternational data corporation with digital doubling of size

datasets discussed in
throughout the years. The digital doubling of universal
size of copies reached every year. The physical data can
handle the terabyte scaling and megabytes scaling of
everyday data (Armbrust ef al., 2010). Huge and massive
fractions of data used popularly by the mobile devices.
According to the energy constraints and limited storage
capacity with actual time for processing the analysis of
nontrivial content of cloud based services.

The cloud computing system stores huge amount of
system resources by attaiming their accuracy in results
(Byvkov et al., 2011). The query request approaches at
actual time m the cloud computing resources. Thus, to
umnprovise the entire system performing has their efficient
storage of existing systems. The speeding up process
while searching the hierarchical filters for mdexing the fast
process of searching. This continuous process can
momitor the query execution thus to optimize the cloud

scale queries. The query optimization has parallel data
processing along with approximate query for cloud data
with encrypted data in keyword search.

The multiple keyword searches have minimized file
systems by retrieving the latency of context in cloud
information (Wu ef al., 2011). The ranks will be minimized
by the queries for retrieving the latency containing the
cloud details. As the inefficiency n space with large and
complex addressing of hierarchical system contain
actual query instance. By supporting the real time query
with hash based data structures develops indexing in
accordance with them. The hashing based data structures
leads to utilization of less space accommodation. The
huge latency risk for managing the hashing collisions
addresses the complexity (Hua et al., 2009). Conventional
techniques used for hash table deals with hashing
collisions that may address them openly by having chain
of coalesced hashing.

The traditional hash tables used in Cuckoo hashing
address the hashing in collisions through sample out of
operations by moving items among hash table inclusion
by searching the linked lists with hierarchical addressing.
The parallel hashing demonstration of Cuckoo hashing
involved in chain of hash with increased loads of

Corresponding Author: D. Seethalakshmi, Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu,

India

7189

J. Eng. Applied Sci., 12 (23): 7189-7193, 2017

Cuckoo hashing. To use hash tables with every instance
of storage buckets (Wang et al., 2012). The Cuckoo
hashing 1s a kind of bucket suitable for mecluding the
dynamic hashing collision. The items moved by the
positions irrespective of their positioning table and
inclusion factor. The system that ensures equally
distributed data items m the hash tables.

Literature review: Cuckoo hashing can be efficiently
varies by multiple options with hashing systems with
replaced items (Liu ef af., 2012). It can have multiple
processes of buckets with hash tables. There are no
vacant buckets with items in the process. They make it
out of the existing buckets as an alternative of inclusion
cost overflow. The linked list has items for operating the
recursive Items that can occupy the items within the
buckets in the inclusion operation.

M. Mitzenmacher explains the hyper graph selection
of various options can be operated by the Cuckoo
hashing (Craimceanu, 2013). Existing Cuckoo hashing
develops the theoretical results by similar properties
with hierarchy of bipartite graph. Cuckoo hashing has
variables referred by managmg the hash collisions
without any breadth first search methodologies.

The selection of items in the buckets with inclusion
of item has empty possibility of locations is detailed by
Bruno ef al. (2013) and Hua ef al. (2012). The decrease
hash table techmiques based on its data structures
handles collision using inclusions, deletions more than
searching of index in linked lists. The concept of constant
query complexity that guarantees amortization time was
used for melusion and deletion of process. Thus, it
improvises the utilization of space by increasing the
latency of query based results.

The implementation of data structures in the hash
table by acquiring the sequential hardware using
multiprocessor machines that synchronizes their access
(Cao et al., 2014). Such concurrent access of information
i data structures will be more important and their
significance will be focused on concurrency of hash
tables. By handling such collision leverages the
randomness in strategies that selects recursive loops
holds metadata for their mitigated Cuckoo hashing.

The data mitigation along with key relocations has
extra spatial cost as discussed by Wang and Yu, the
performance will be high (Ti et al., 2010). Intensive data
items inserted by the real time queries based on storing
the Cuckoo hashing. It kicks out the functionalities that
incur the intensive data migration within the servers. The
candidate buckets of other items within the existing
operations by migration of the hash tables between
multiple buckets.

The Cuckoo hashing considering various
differentiations can be handled and as defined by
Frieze et al., the hash collisions without any analysis over
the breadth first search (Hua et af., 2008). It has random
walk efficiency by random methodologies. The buckets
of different candidates will be selected from the item
included and there 1s no vacancy in thewr probable
locations. The decreased probability of failures when
including an item the robust hashing or Cuckoo
hashing has low amount of constants in stashing
(Bjorkgvist et al., 2011). The equivalent improvisations in
analysis of items have simulations.

The various schemes in Cuckoo hashing have
variations as described by Necklace et al. with identical
min counter methodology (Peterson, 1957). The various
methodologies and phases of Cuckoo hashing focused
storage performance. Inclusion functionalities in Cuckoo
hashing have items that search estimated locations among
the people. A pair of recursive items that can send
out the buckets from each other will be common. The
min counter variations can be handled by such
methodologies.

MATERIALS AND METHODS

Cuckoo hashing scheme: Cuckoo hashing scheme is the
dynamic static dictionary that has leverage over hash
collisions by mitigating the estunation complexity by
using linked lists in traditional hash tables. The number of
items having conventional hash tables placed over the
items with increased hash collisions. In all the candidate
buckets of hash collision that included in the execution of
operations dynamically operates the hashed buckets.
They choose the suitable buckets for the new item to be
inserted. As it is identical to the character of Cuckoo bird
that kicks out its younger one from their nest this
proposal is named as Cuckoo hashing. Tn such manner
hashing recursively kicks out the items from the buckets
by leveraging various hash functions by alleviating the
hash collision functions. It does not avoid hash collisions
completely. By inserting them the endless loop will be
formed and managed by the position of collision until the
loop breaks out. The cost effective overheads takes
advantage of less spaced addition and constants it offers
variations in hash positions.

The broadly used applications in the actual world
the implementation of router should avoeid huge number
of items included in the operations. The cost effective
overheads implementation the hardware will be
acceptable. The chunk stash is one of the variants of
Cuckoo hashing that resolves the hash collisions to be
indexed. The hash collision and data migration based on

7190

J. Eng. Applied Sci., 12 (23): 7189-7193, 2017

the Cuckoo based hashing scheme in cloud storage
servers. Allocating the min counter in hash tables in
buckets to record the kick out instances occurred in the
buckets. The position of candidates in the new item
included by the other items chooses the minimum
counter more than the random execution of replacement
functionalities. The importance of executing the hash
collisions decreases the data migration by items balanced
by the hash tables. Tmprovising the space efficiency by
decreasing the latency illustrates the salient features of
load balance by infrequent access of items. The higher
risks can again build the complete hash table thus, to
reflect the problems in using cloud commodity server.
Cuckoo hashing has cost effective counters to lessen the
existence of recursive loops by choosing the cloud
commodity server for rent.

The prototype implementation by the comparison of
approach towards the Cuckoo hashing helps the stash
chunk that tracks the random dataset. The illustration of
performance improvisations utilizes the hash tables and
inclusion latency. Cuckoo hashing has multiple hash
positions of an item that helps the items to move n
between the hash positions. The extra space overheads
precisely have space units 1dentical to the space overhead
by the binary search tree.

Cuckoo hashing traditionally uses two hash tables by
providing length with two hashing functions with each
items length. The two buckets will be mvolved but not
both will be involved at once. The hash methodologies
required by the independence of the rules with random
distribution of hash tables in the operations involving
standard Cuckoo hashing. The arbitrarily chosen empty
buckets will be inserted with the item in table and the
process will be recursive till all the items find appropriate
buckets of their own storage space.

The commodity server used for rent by the cloud
storage system stores the data when the cloud storage
borrowed 18 not enough. The neighboring cloud will be
used for elasticity as commodity server. The Cuckoo
hashing has hght weight process with other server
transmissions that verifies its data integrity. The common
crisis oceurs 1n elasticity of commodity server has endless
recursive loops which takes more time to restore data. The
hard bucket handles more endless loops than the cold
bucket which handles easy hashing loops.

The recursive process of identifying the buckets
will be illustrated by the dynamic process successfully
included by moving items from one table to the other. The
threshold will be attained when the endless loops stored
in their suitable buckets and new items to be inserted and
concurrently the unused items will be kicked out. The
number of recursions specifying the defined thresholds
will happen to the random options. As the hot buckets are

kicked out and cold buckets only are concentrated with
low frequency it adds more disadvantage to the existing
hashing algorithms. Tt mainly improvises performance and
avolds unnecessary waiting time providing high accuracy
and mitigating the efficient collision mechanism.

Quaternary defense mechanism in Cuckoo algorithm
implementation: The dynamic Cuckoo hashing with static
meaning used to speed up queries with worst case and
constant scaling of instances according to the flat item
response between multiple choices. The endless loops
followed by the high performance mn concurrency of
applications. The feature that offers inclusion of items
efficiently it enhances the experience of cloud users. The
threaded selection by quaternary algorithms handles the
hash collision of Cuckoo hashing. The segregation of hot
bucket and cold bucket first in the quaternary thread
operation will be invoked. In this each thread handles the
hot and cold buckets and improvises their performance
and 1t avoids unwanted waiting time. The other two
threads one monitor the hashing for recursive loops. The
other thread will be dedicated for overcoming attacks. As
most of the time attack does not occurs the thread
dedicated for attack defense assigned for handling hard
and cold bucket problems. Tt acts as elasticity defender
for occurrmg problems. The threads handling similar
instance, for providing the significance of hot bucket
and 1t leads to more accurate and efficient mitigation in
collision operation.

The quaternary threaded selection algorithms can
manage the hash collision effectively by the Cuckoo
hashing. The segregation of hot bucket and cold bucket
of two different threads makes the implementation of
algorithm more efficient. Improvisation of the efficiency
done by avoiding unwanted waiting time and manages
both threads at same mnstance of tume. It sigmifies both hot
bucket and cold bucket with more accuracy and mitigation
over hash collision.

As both hot and cold buckets were concentrated
concurrently they achieve recursive and endless loop
of hash table organization which will be illustrated in
Fig. 1. The performance unprovisation helps m speed,
execution quality and increase the quality of service of
cloud servers by giving them equal priority.

The other two threads monitors and overcomes
attacks. Momtoring of attacks helps identifying attacks
before attack and defense afttacks before losing any
data. The other thread overcomes attacks 1if exist. It
also participates in monitoring attacks when no attack
takes place. If it finds any attacks then the data from
that commodity server will be transferred to the other
altermative commeodity server. Then it disconnects the
commodity server and blacklists it for other user’s

7191

J. Eng. Applied Sci., 12 (23): 7189-7193, 2017

Cuckoo dynamic Monitoring

and static hashing

s

e

Quaternary
threads

A

Hot Cold
bucket bucke

=[]

Fig. 1: Architecture of quaternary defense mechanism

reference. There is a chance of recovery of data from
that server by the attacker thus, the quaternary defense
mechanism stores the fake values in that place of data
thus attacker will never get the appropriate data.

The hard bucket hashing will be handling attacks
like denial of service increase in traffic efficiently. The
commodity server prone to hacking attacks such as
mtrusion, leeching thus, momtors and defense over the
attacks. By attacking the commodity server it will directly
attacks the main server creating defense by attacking the
immediate other commodity servers also.

Cloud servers will be depicted by creating
and managing the analysis of huge amount of
high-dimensional data. Its unstructured data provides
process punctually and accurately by processing their
queries in the cloud servers. The frequently accesses hot
bucket will be taken for one process and infrequently
accessed cold bucket will be taken for consideration by
another process. Both buckets will be segregated in
accordance with their duration and accessing instance
of time.

Figure 2 shows the proposed quaternary defense
mechanmism will overcome the commodity server attack by
sequential monitoring. If any afttack is suspected then it
disconnects the connection of commodity server from the
main server. Before discomnection for safety purpose
quaternary defense system will:

* Black lists that commodity server so that, other cloud
servers will not be snared by this attacked server

¢ Tt stores the fake values in the address space where
the actual data stored thus there 1s no leakage of data
if any recovery applied also

¢ Then that cloud commodity server will be freed for its
database storage and have no mteractions between
each other

100%
100

804

60 4

Effciency level

Cuckoo hashing Quaternary mechanism

Techniques of cloud storage

Fig. 2: Efficiency level representation for quaternary
defense mechanism

Thus, we handle hashing and cloud storage problems
efficiently. The monitoring system acts as firewall for
attacks such as Demal of Service (DOS), network
traffic, hacking intrusion attacks and leeching. Quaternary
defense system can handle endless loops through hard
bucket, cold bucket, monitoring attacks and overcomes
other attacks efficiently.

RESULTS AND DISCUSSION

Experimental and performance analysis: The quaternary
threaded selection algorithm used for concurrent handling
of both hot bucket and cold bucket that will be executed
by invoking both types of threads. The management of
hot and cold buckets will be depicted and the min counter
will be plotted according. Thus these threads provide
identical sigmificance to complete the task much
efficiently. Although, the hot bucket blocked by infinite
number of loops the complete reconstruction helps the
cold buclet thus it helps to recover it.

When four threads are executing then there exists
deadlock situation which might be avoided by the
synchronization technique throughout the execution time.
It greatly helps out to avoid deadlock situation thus it can
be a fault tolerant. The performance level and efficiency
for handling attacks will be higher in quaternary defense
mechamsm than any other alleviated Cuckoo hashing
technique.

CONCLUSION

In the study, we propose the quaternary threaded
algorithm which handles both hot and cold bucket

7192

J. Eng. Applied Sci., 12 (23): 7189-7193, 2017

hashing and monitoring and handles attack efficiently.
The optimized Cuckoo hashing in the large scale cloud
computing system based on the data structures used will
have intensive data mitigation by utilizing the latency
inclusion and low space utilization. As the defense
mechanism in the proposed approach is strong and
determines the efficient Cuckoo implementation in
commodity servers. The extensive usage of Cuckoo
hashing in such quaternary threaded platform helps
improvising the utilization ability and efficiency
throughout the algorithm implementation.

REFERENCES

Armmbrust, M., A. Fox, R. Griffith, AD. Joseph and R. Katz
et al., 2010. A view of cloud computing. Commun.
ACM, 53: 50-58.

Bjorkgvist, M., L.Y. Chen, M. Vukolic and X. Zhang,
2011. Mimmizing retrieval latency for content
cloud Proceedings of the IEEE Intemational
Conference on INFOCOM, April 10-15, 2011, TEEE,
Shanghai, China, ISBN: 978-1-4244-9919-9, pp:
1080-1088.

Bruno, N., 3. Jam and J. Zhou, 2013. Continucus
cloud-scale query optimization and processing.
Proc. VLDB. Endowment, 6: 961-972.

Bykov, 5., A. Geller, G. Kliot, JR. Larus and R. Pandya
et al, 2011. Orleans: Cloud computing for
everyone. Proceedings of the 2nd ACM Symposium
on Cloud Computing, October 26-28, 2011, ACM,
Cascais, Portugal, ISBN: 978-1-4503-0976-9, pp:
1-16.

Cao, N., C. Wang, M. Li, K. Ren and W. Lou, 2014.
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. IEEE. Transac. parallel Distrib.
Syst., 25: 222-233.

Crainiceanu, A., 2013. Bloofi: A hierarchical bloom filter
index with applications to distributed data
provenance. Proceedings of the 2nd International
Workshop on Cloud Intelligence, August 26-26,
2013, ACM, Trento, Ttaly, ISBN:978-1-4503-2108-2,

pp: 1-4.

Hua, Y., B. Xiao and J. Wang, 2009. BR-Tree: A scalable
prototype for supporting multiple queries of
multidimensional data. IEEE. Trans. Comput., 58:
1585-1598.

Hua, Y., B. Xiao, B. Veeravalli and D. Feng, 2012.
Locality-sensitive bloom filter for approximate
mermbership query. IEEE. Trans. Comput., 61: 817-830.

Hua, Y., B. Xiao, D. Feng and B. Yu, 2008. Bounded LSH
for similarity search in peer-to-peer file systems.
Proceedings of the 37th International Conference on
Parallel Processing, September 9-12, IEEE, Portland,
Oregon, USA., ISBN:978-0-7695-3374-2, pp: 644-651.

Li, I, Q. Wang, C. Wang, N. Cao, K. Ren and W. Lou,
2010. Fuzzy keyword search over encrypted data in
cloud computing. Proceedings of the 9th IEEE
International Conference on Computer
Communications, Joint Conference of the IEEE
Computer and Communications Societies, March
15-19, 2010, San Diego, CA., USA., pp: 1-5.

L, Q., C.C. Tan, J. Wu and G. Wang, 2012. Efficient
information retrieval for ranked queries in
cost-effective cloud environments. Proceedings of
the IEEE International Conference on INFOCOM,
March 25-30, 2012, IEEE, Orlando, Flerida,
ISBN:978-1-4673-0773-4, pp: 2581-2585.

Peterson, W.W., 1957. Addressing for random-access
storage. IBM. J. Res. Dev., 1: 130-146.

Tumer, V., I.F. Gantz, D. Reimnsel and S. Minton, 2014, The
Digital Universe of Opportunities: Rich Data and the
Increasing Value of the Internet of Things.
International Data Corporation, Framingham,
Massachusetts, USA.,.

Wang, C., K. Ren, 8. Yu and K.M.R. Urs, 2012. Achieving
usable and privacy-assured similarity search over
outsourced cloud data. Proceedings of the IEEE
INFOCOM, March 25-30, 2012, Orlando, FL., pp:
451-459.

Wu, S, F. Li, 8. Mehrotra and B.C. Ooi, 2011. Query
optimization for massively parallel data processing.
Proceedings of the 2nd ACM Symposium on Cloud
Computing, October 26-28, 2011, ACM, Cascais,
Portugal, ISBN:978-1-4503-0976-9, pp: 1-12.

7193

	7189-7193 - Copy_Page_1
	7189-7193 - Copy_Page_2
	7189-7193 - Copy_Page_3
	7189-7193 - Copy_Page_4
	7189-7193 - Copy_Page_5

