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Dynamics of a Mobile Manipulator of 8 Degrees of Freedom for Inspection Tasks
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Abstract: Dynamics is an enormous field dedicated to the study of the forces required to cause movement. To
accelerate a manipulator from an inert position, slide it with a constant speed of the end effector and finally
decelerate it to a complete stop, whereby the joint actuators must apply a complex set of rotational moments
functions. The exact form of the required functions of moment of rotation of an actuator depends on the
kinematic and dynamic parameters of each one. A method for controlling a mampulator to follow a desired path
mvolves calculating these functions using the dynamic equations of the manipulator’s motion. On the other
hand, for mobile robots, the dynamics allows determining the necessary torque required to reach the speeds
in each wheel. In addition, it creates additional restrictions to the workspace and trajectories due to the
consideration of masses and forces acting on the robotic platform. For the above, the present research
describes the dynamic model for a hybrid platform composed of a manipulator arm of 5 degrees of freedom and
a mobile platform of six wheels with traction in each of them.
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INTRODUCTION

Most mobile robots have special characteristics
that allow them to adapt to certain tasks such as the
mspection and reconstruction of land (Campion et al,
1993). Tt is the definition of the tasks that determines the
structural particularities of the robot, defined by the type
of wheel or articulation as well as the system of traction
and direction and the mechanical form of the robot which
opens the way to specific the sensory characteristics of
the robot (Williams et al., 2002; Jones et al., 1993). To
achieve the rehability and maneuverability of the
mechanism, the calculation of the dynamics underlying
the mathematical formulations of the equations in motion
between articular coordinates (robot end coordinates),
their derivatives (velocity and acceleration), forces and
pairs applied to the joints and robot parameters
(masses, inertia, etc.), to relate the movement of the robot
and the forces involved in it (Zoo and Bement, 1992).

There are two methods for calculating the
mathematical models of the dynamics system: the
Newton-Euler and the Euler-Lagrange formulation. These
provide the same equations of motion in the mechanisms
but from two different points of view. On the one hand
Newton-Euler’s approach i1s based on an iterative
calculation of the balance of system forces by defining
the linear and angular equations of motion of each link

independently. While the Euler-Lagrange formulation
bases its structure on the balance of system energies, it is
posed as the difference between kinetic and potential
energy. In this one can also be considered the effects of
friction caused by the mechamecal transmissions of the
engines that propose the system as non-conservative
(important consideration because the frictions can reach
25% of the torque required to move the manipulator)
(Craige, 1989).

MATERIALS AND METHODS

Robotic manipulator dynamics: For the development of
the present work we consider the scheme of Fig. 1, where
the structure of the mobile manipulator is specified. It
should be considered that for the dynamic calculations of
the mechanism a decoupling is contemplated between the
mobile platform and the manipulator where by the frame of
reference and movement of the manipulator is considered
at the beginming of the kinematic cham but not as
the set of global coordinates of the hybrid platform. For
notation s, = sin(f)), cy; = cos(f)), 8.0, = 5in(6 +6,),
Corvaz) = cos(B 6, s (B1+02+03) sin(B +8 46 ) c (B1+83+683)
cos(0,4+0,10,).

Manipulator dynamics: We will implement the lagrange
formulation and the Rayleigh dissipation function that
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Fig. 1: Hybrid platform scheme

considers the friction effects already mentioned. Losses
due to joint strikes as well as engine efficiency are
neglected in the analysis of the Lagrange equation of
motion. Finally, the manipulating mechanism of Fig. 2 1s
considered as a rigid system, concentrating the masses in
the center of each link as is shown in Fig. 3.

To calculate the dynamics of the manipulator, it must
be considered that there are two techmques for its
caleulation: direct and mverse.

Tnverse dynamics: The dynamic model of the robotic arm
of DOF 1s obtained by applying the Lagrangian motion
equation defined by the Lagrangian of Eq. 1 with its
motion equations given by Hq. 2:

L=K-U D

d)oL oL | 19D, 2)
dt| dq, | | 9q; | | 9dq
Where:

K = The kinetic energy of the system

U = The potential energy

q = The generalized coordinates that describe the
positions of the mampulator links of n DOF

= Its derivative

T = The generalized force associated with generalized
coordinates

D = The Rayleigh dissipation function

D:%[bIXSf]

where, 8 the velocity difference through the viscous
damper that can be expressed as a function of the
generalized variables 4 (Ogata, 1987). The kinetic energy
of the system 1s defined m Eq. 3 for rotational and

Fig. 2: Five DOF arm scheme

Joint O,

Fig. 3: Location of the centers of mass of the links

in Eq. 4 for linear. Where m 1is the mass of the element &,
and v, are the rotational and linear velocities, respectively
of the link T is the inertia of the element defined by T=m.17,
y 113 the length of the link:

K, = lXIIXGf (3)
2
! z €
KL = E><1'11i><vi

For the analysis of the articulation of the base we
have Eq. 5 and 6 that describe the kinetic energy of the
same:
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K, = 2x1, 6’ (%)
2
Ib :leh sz (6)
2

For tlus case, the potential energy 1s zero because
there are no changes in height that generate motion in 8.
We proceed with the analysis of joint 1 of which we have
the Eq. 7-11 to describe the kinetic energy and Eq. 12 for
the potential energy:

K, :%xmlxvlz—&-%xllxég (N
o ®
1 9
X, = EIX Cq, 9)
L (10)

y= 5 e
I, = mxx; (11)

1

P, = mlxng‘xsa2 (12)

Then, we have for the joint 2 the kinetic energy is
given by Eq. 13-17 while the potential energy is given by
Eq 18:

Kz :%xmzxv§+%x12x(§§ (13)

ViR a9

x. =1 x%¢ +I—2><c (15)
e 2 (8:785)

y, = I1X562+%Xs(ez+ej) (16)
I, = m,xx’ (an
p, = m,xgxl s, +m,xgx Lxs (18)
2 2 7% 2 o (&)
For jomt 3, the lanetic energy 18 given by

Eq. 19-23 while the potential energy is given by
Eq 24:

1 1 ;

K, :ExmjxvngEijxei (19)
Cxe. 41 L (21)

%y =1, T O ) T Xm0
=1xg, +.x +13>< (22)

Yo T H 80, T S0 Slerresian)
13 :m3XX§ (23)

P, :maxgxllxsez+m3xgx12xs(ez+83)+m3x

. 4)
gXEXS(eﬁe‘B*ea)

Finally, for the gripper joint the kinetic energy is
given by Eq. 25-29 while the potential energy is given by
Eq. 30

K, = leCXVi+lXIEXGi (25)
2 2

vi= X4y (26)
X, :llxcez+12xc(92+%)+13xc(92+83+94) (27)
Y. = 11XSE\2+12X5(ez+53)+13x5(32+ea+34) (28)
I, =m xx’ (29

P = W@l s Fw gl xs W ogxl s,
(30)

Returning to Eq. 1, the Lagrangian calculation is
performed as shown in Eq. 31:

L =K, +K +K,+K,+K p, b, -0, 25D, (3D

The lagrangian of Eq. 31 must be derived as shown in
Eq. 2 for the calculation of the derivative for the
generalized coordinate 0, will be performed as an
llustrative example. Therefore, in Eq. 32-34 the derivatives
for the articulation of the base are shown as:

oL,

- 2
a—ql = rr13><81><(12><c(62+63)+11><c82 +(13><c(82+63+84))/2) +
R 2 R
GIXW:X(IZXC( +,xe, +1xe +m, xr <8, +

6y+85) (92+63+94))

- 2 .
[mZXGIX(lzxc(%m})+2><11><ce2) J/4+(lfxmlxelxc;)/4
(32)
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81+wc><(12><c Hxe, +13><c(62+83+84

2 . -
(o) )) <0 +my a0+

- -
[mzx(lzXC(ez+ej)+2X11XCez) Xel}/4+(lf><m1><c§,2><81)/4—m2><

élx((lzxs(efej)x(éz+63)+2><11><s92 ><€)2)><(2><11><c82 +12><c(92+93)))/
2_2xm3><91x(11><c92 +(13XC(32+33+94))/2+12XC(92+93))X
(L8090, 4105 041 (050,40, ))12)-
2chxélx(11xcez +13xc(92+%+84)+12xc(92+%))x
Lxs,. . 8+8 Hxs ><8+ oo
27 (58) ( ) % _(llzxrnlxcezxsez xelxez)/2
IBXS(eferen) (e 19,46, )
(33)
Lo (34)
a(h

The same procedure is performed for the other
generalized coordinates. Once the manipulator model 1s
obtained for the first four degrees of freedom, the
equations must be organized as shown in Eq. 35 where the
viscous frictions are considered as a constant of friction
v proportional to the generalized variable

M(q)a+V(q,d)+G{a)+Fa =1 (35)
Where:
M(q) = The inertial matrix
V(g q — 1he vector of centrifugal and Coriolis forces
G(p) = The vector of gravitational forces
q = The vector of friction forces

For ease m implementing a subsequent control,
Eq. 35 should be expressed as shown in Eq. 36:

5

] [A B Cc D|9] Q] U
1, |E F G H|6,| |R| |V
= e + +

T, I J K L|g]||s |w

| [M N O Plg| T |X

) - (36)
(v, 0 0 0] |8

0 v, 0 0| 92

0 0 v, 0||p

00 0 v g
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From Eq. 36, we have for the joint 1, the torque
defined by Eq. 37:

T, = AG,+BO,+CH,+DB,+Q+U+Fv,6, G7
where, A, B, C, D, Q, U are defined by Eq. 38-43,

respectively and are obtained from the Lagrangian
obtained in Eq. 32-34:

2
A= rr13><(12><c(92+83)+11><cEi2 + (laxc(eﬁeﬁeq))/Z) +

2
WCX(IZXC(92+E‘3)+11XC% +13><c(82+63+64)) JrHlbxerr (38)
2
(mzx(lzxce2 +2><11><082) )/4+(1 Xm1XC )/4
B=0 (39)
C=0 (40)
D=0 (41)

Q=m0 20,48, 15, 4,55, (8,48, ))

(1 4G g e F2X ))/2_2xm3xél><(llxézxcez+
(75, g n,) (07040 ))/241: 5 {848 )
(L7€1g e T, e (ez+es+e.,))’/2)'2><91><V"c>< 2
(0050, 3750 (00370 s g
(8 )) ( Cle,a,) +11><cez+13><c(82+93+94))_
(1 xm, <0, +0 <G, Xsez)

U=0 (43)

Direct dynamics: The direct dynamic model shows the
temporal evolution of the articular coordinates as well as
their derivatives as a fimction of the forces and pairs
involved. To obtain it, the mverse model of Eq. 36 to
which Cramer’s rule 1s applied and the substitution of the
null Cofactors 15 used. For the management of the
matrices in the calculation of the determmants the Eq. 44
1s used. Therefore, in solving Cramer’s rule we have the
Eq. 45-4%:

7, = AD
7, = FO,+GO,+H0,
7., = 18,+K6,+L8,

Z, = NO,+00,+P0,

1

(44)
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[z, 0 0 0
7z, F G H
7, 1 K L
'61::2“ N O P| 7 (45)
A 0 0 0] A
0 F G H
0 J K L
|0 N O P
(A 7, 0 0]
0 72, G H
0 Z, K L GLZ,-HKZ,-HOZ, +
5 oz, © P_(HOZ#KPZZ—LOZZ }
2 TA 0 0 0] FKP-GIP+GLN-
0O F G H {HKN-FLOJrHJOJ
0 I K L
|0 N O P]
(46)
A 0 7, 0]
0O F Z, H
0 J Z, L FLZ,-HIZ,-FPZ., +
5 0N 7, P__(HNZBHPZZ-LNZZ] 47)
A 0 0 0 FKP-GIP+GLN-
0 F G H {HKN-FLOJrHJO]
0 J K L
|0 N O P|
(A 0 0 Z]
0 F G 7,
0 J K Z, FKZ,-GIZ,+GNZ,-
§ 0N O z4_(Fozj-KNz2+Jon 48)
*TA 0 0 0 FKP-GJP+GLN-
0 F G H (HKN-FLO+HJO]
0 J K L
|0 N O P|

Mobile robots dynamics: It 13 considered the initial
structure of Fig. 4 which specifies the wheel configuration
as well as the initial variables that should be considered
for the development of the dynamics of the system.

To simplify the model, we consider the torques
generated by the wheels located on the right as a single
general torque, the same for the wheels located on the left
side of the vehicle as shown m Eq. 49 (Krzystof and
Dariusz, 2004).

SRIHSIE
Ty T, +T,+7T,

From the Eq 49, we specify the generalized
coordinates that characterize the movement of the system
from which we obtain three variables that describe the
position and orientation of the platform and two variables

that specify the angular positions of the wheels which the
coordinates of Lagrange are presented in Eq. 50

q:(xc’ yc’ 87 (pR7 (p]__) (50)

where, x, and y, represent the coordinates of the center of
mass of the platform 0 is the orientation angle of the
system and ¢,. The angular position of the vehicle wheels.

Inverse dynamics: For the development of the inverse
dynamics of the hybrid platform, the Euler-Lagrange
formalism is implemented which can be described by
Eq. 51 (Dhaouadi and Hatab, 2013):

M(q)a+V(a.q)a+F,q=B{q)t-A" (q)X

Where:
A(q) = The Jacobian matrix of movement restrictions
A = The vector of force constramnts or lagrange

multipliers

This scheme, 1t’s like the one proposed in the
dynamic equation of a robot mampulator. The differences
are found in the right part of the equation where two facts
are considered exclusive to mobile robots: not all wheels
have to be actuated, besides there are non-heolonomic
constraints to robot movement.

To begin with the development of the mathematical
model, the movement restrictions under which the system
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is subjected are presented. The first in Eq. 52, defines that
the vehicle carmot be moved sideways, only forwards and
backwards, this means that the linear speed of the
mechamsm 15 governed by the linear velocity of each
wheel defined in tuwn by its the angular velocity
(Tian et al., 2009):

¥.CoX. 8, = 0 (52)

The other restrictions present are shown in Eq. 53
and correspond to the rolling and non-displacement
conditions of the vehicle’s traction wheels. Where 0, 1s
defined as the distance between the center of the vehicle
and the traction side wheels:

X:CGJFYcSeH'u =1y (53)
X:CGJFYcSe'lﬁ =1,

The trictions specified above can be written as
Algq=0, where A(q) 1s specified in Eq. 54 (Sarkar et al.,
1993):

0 0 0
14 r 0 (54

Now, we proceed by deriving the dynamic equations
of the mobile platform, so that the Lagrange equations
with the Lagrange multipliers A, Az, A, are given by Eq. 55

mX A Sy (Agthy Jo, =0
my:+7u:ce-(?\.R+7uL)se =0

I +HAg +IA, =0 (35)
L, tA,r =1,

L A =1

where, m = m+2m, to m, equal to the wheels mass and m,
equal to the vehicle mass without the wheels; I = I+2[, for
I, = (1/2)xm x1* defined as the moment of inertia of the
mobile and T the moment of inertia of the wheels
which for this case study can be taken as the same value
for all and t; which is specified as the torque acting
on the axle of the wheels (Yun and Yamamoto, 1993).
Finally, to obtain Eq. 52, we proceed to define the matrices
that characterize it, as shown in Eq. 56-59:

m
M(q) =| 0 (56)
0

o 8B o
—_— O O

0
V(q.q)=]0 (57)
0
C, Cy
B(q) :% S, S (58)
1 -1
SR
TL

Then, we define the matrix S(q) of Eq. 60 formed by a
set of linearly independent vectors that span the null
space of A(qg). Therefore, the multiplication of these
matrices is defined as Eq. 61:

51 5
21 21
S{q) = [;Jlxse [;Jlxse (60)

T T

2 21

s(q)" AT(q)=0

In addition, it 1s possible to find a vector of time
functions for all t, defined as v{t) = [v; v, ] which represent
the angular velocities of the wheels on the right and left
of the vehicle and allow obtaiming alt) =S{avit) in Eq. 62,
whereby lagrange multipliers can be elimmated from the
general dynamics equation (Mehrjerdi and Saad, 2010):

21
E ! VR 62
y. |= 173 — [Ixs { } (62)
5 [21} ° {21} “ll v,
r L
21 21

< =
(-1
L
Il
=T

1
T
1
T

Annex, this expression can be differentiable until we
obtain Eq. 63, cleared in Eq. 64:

q(t) =S(q)v(t)+S{q)¥(t) (63)
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X, 7-9><se 0 s O
: v v

V. |=| Bxcqg O { }+ c, O { }

! W W

0 0 0 0 o
ST (64)
[%,] | -Ovxsg+vxce,

¥ |=| vxs, —Oxvxg,
18| W

From Eq. 51, the dynamics can be re-structured as
shown in Eq. 65:

m 0 0 ) Cy, Cg . Sq

0 m 0|g=-|5s, 5, { R}r <, [n (63
T T,

0 0 1 [ 0

From Eq. 64 and 65, one can conclude the values of v
and w as shown in Eq. 66 and 67:

¢ (@) (66)
mxr
1
V= (T 1) (67)
Ixr

Multiplying Eq. 60 with Eq. 51, we obtamn Eq. 68 to be
implemented as shown in Eq. 69 (Williams ef al., 2002):

S() M()ars(0) V(e 9)a-s(a) g
F.d=5(q) B(a)e-8(q) AT (q)%

T

o[ S0 V(@9)a-8(a)" | 49,

(M) | mtaye

RESULTS AND DISCUSSION

Manipulator results: The system dynamics simulation
15 performed with torques and pulse signals of
amplitude 2 N/m and a period of 5 sec which it 1s observed
if the angles of Fig. 5 and velocities of Fig. 6 have
constant behaviors with values that do not tend to
infinity.
Mobile the correct
calculation of the dynamic difference of the mobile
robot, we considered (Fig. 7) which shows the
based on the

changes of radius of Fig. 8 that are determined

platform results: To verify

angular variation of a wvehicle
by the instantaneous center of rotation in a random
path.

From the results

angle the simulation 1s performed having as input

obtamed m radius and
torques with amplitude of 10 N/m which a constant
behavior in speed in is observed with variations
angular changes in the
direction of the vehicle as shown in Fig. 5. The value of

in Y given by the

6 is due to an initial condition specified as a value of
0.7854.

l_

O—W

< -1
24
234

et 0O 00—

0

Fig. 5: Angular behavior of the joints

Values
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Values

Fig. 6: Velocity behavior of the jomts

0.20 4 154
0.15 " 1(5):
0.10 - 0 T T T T 1
4 0.3
g " _ 02
) ) 0.1
3’ 0 . . : : .
< -0.05 0.9
-0.104 @ 0.8
-0.151 0.7 T T T T 1
0 2 4 6 8 10
-0.20 T T T T 1 Time (sec)
0 2 4 6 8 10
me (s<c) Fig. 9: Behavior in velocity of the generalized coordinates
Fig. 7: Angular trajectory of the mobile robot
301 CONCLUSION
2.54 . . . . .
When performing the simulations mn the manipulator,
20 1t was verified that none of the behaviors of generalized
% coordinates nor their derivatives have values that tend to
E 1.5 infinity which ensures the correct calculation of the
Lo- dynamics of the mechanism. On the other hand, when
’ performing the mobile platform simulations, it was verified
0.5 that none of the behaviors of the generalized coordinates
nor their derivatives have values that tend to infinity
0 5 S v 4 0 which ensures the correct calculation of the dynamics of
Ti the mechanism.
ime (sec) R . L. .
With the calculation made, it 1s possible to proceed
Fig. 8: Radio for calculation of inertia with the implementation of control algorithms that allow
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to obtain the desired behaviors in the system when
performing trajectories in addition to ensuring that
none of the torques exceeds the maximum value of the
motors.
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