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Abstract: Globally, the implementation of immersive environments for learning activities have been in constant
growth which indicates that their development must improve daily. For this reason, this study identifies trends
(co-occurrences) and relationships between variables associated with an inmersive environment to improve
its implementation. Results were found which show that a good design of nformation guides, orgamization of
menus and useful instructions generates that the users enjoy using the immersive environment for learning and

foments recommendations of use to other users.
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INTRODUCTION

An immersive environment is a three-dimensional
space where users represented by avatars perform
education, work and entertainment activities as if they
were present in that virtual place. These environments are
a trend mn the educational sector because they allow the
interaction of users with materials and tools in a 3D space
for an immersive expenence (Comas-Gonzalez et al., 2017,
Kovacs et al., 2015).

Immersion is a concept that generates differentiation
in learning, contributing with positive effects for
education through 3D environments (Zamora et af., 2016;
Cho et al., 2015). Therefore, immersion 1s a recent trend in
e-Learning, fostering the construction of knowledge in an
mnovative way (Pollock and Biles, 2016, Peng et al,
2015).

Tt is important to mention that for the implementation
of immersive environments based on Information and
Communication Technologies (ICT) reaches a positive
unpact, must be necessary, planmng and design
according to processes related to the wser and not
only teclmological processes (Khalifah et al, 2017,
Freire et al., 2016, Tawil et al, 2012), 1.e., the use of
ICT in education without planning generates e-Learning
resources without the necessary elements that allow the
users to reach the desired objectives (Zamora-Musa et al.,
2017, Arantes ef ai., 2016).

In the same way, education through immersive
environments in addition to being related to ICT 1s
also associated with the pace of learning (Long and
Qing-Hong, 2014) and traming needs
(Logreira et al., 2016). Therefore, it is necessary to use

of users

data mining to identify trends between variables to
improve mmplementation of an immersive environmernt.

Data mining has been widely used in information
systems, engineering, marketing, among others
(Magsood, 2017, Poorani et al., 2014) but according to
Angeli et al. (2017) in the last 10 years, it is beginning to
be used in the field of education, to improve the
implementation of virtual learning platforms (e-Learning)
as mnmersive environments. The use of data mining allows
to find wvaluable information from organized data,
information that 1s important for discovering trends and
relationships (Medvedev ez al, 2017, Marengo et al.,
2014).

The results obtained when applying data mining are
important to improve learning processes for example, how
to design or redesign a learming environment (Lovkesh,
2016; Romero and Ventura, 2013). In related works, data
mining in the field of e-Learning has been used to give
feedback on course structure (Merceron and Yacef, 2010)
user performance prediction (Ahmed and Elaraby,
2014), design suggestions to 1improve environment
(Udupi et al., 2016; Romero and Ventura, 2013) among
others.
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TIn this study, we apply the rules of association which
is a technique of data mining, its objective is to determine
rules of the form “if-then” where a set of values has
assoclations with another set of values, generating a
prediction or behavior of those set of values (Ameta and
Pathalk, 2016; Baker and Inventado, 2014; Lin et al., 2002).
There are other data mimng techmques such as:
clustering (Gunasekara ef al, 2014), sequential pattemn
mining (Mohajer et al., 2016) and regression (Buja and
Tee, 2001).

MATERIALS AND METHODS

The objective of this research is to improve
the implementation of an 1immersive environment
through data mining for which we must discover trends
(co-occurrences) and relationships among the variables
associated to a swvey made to users. For this purpose
the followmng methodology 1s developed: data selection,
pre-processing and data transformation, using Weka
Software.

In the research, users are represented by avatars and
perform learmng activities, a preliminary study 1s
imnplemented where users in subjects corresponding to
“digital circuits” interact with the immersive environment
and then proceed to answer the survey found in the link:
http://sumi.uxp.ie/en/

The survey seeks to know how the different variables
assoclated with each of the 50 questions are related, the
survey was answered by all users of the mentioned
subject which are 24 students.

The 50 questions in the survey are divided mto
10 question packs where the first 10 questions
correspond to the efficiency of the environment, the
second 10 questions to the influence of the environment,

Name: Eficiencia_1

questions 21-30 correspond to the utility of the
environment, cquestions from 31-40 correspond to the
control that 1s had on the environment and the questions
from 41-50 correspond to the ease of learming in the
environmert.

Data selection: From the immersive environment survey
we have the following information, for data selection:

{@attribute Efficiency 1{Agree, Undecided, Disagree}, (@attribute Efficiency
_2{Agree, Undecided, Disagree }... @attribute Efficiency_10{Agree,
Undecided, Disagree}

@attribute  Influence 1{Agree, TUndecided, Disagree}, (@attribute
Influence 2{Agree, Undecided, Disagree} ... (@attribute Influence 10{Agree,
Undecided, Disagree}

@attribute ~ Utility 1{Agree,  Undecided, Disagree}, (@attribute
Utility_2{Agree, Undecided, Disagree}... @attribute Utility_10{Agree,
Undecided, Disagree}

@attribute  Control_1{Agree, Undecided, Disagree}, (@attribute
Control_2{Agree, Undecided, Disagree}... (@attribute Control_10{Agree,
Undecided, Disagree}

{@attribute  Leaming 1{Agree, Undecided, Disagree}, (@attribute
Learning_2{Agree, Undecided, Disagree} ... @attribute Leaming,_10{Agree,
Undecided, Disagree}

Pre-processing and data transformation: A description of
the data is made with some histograms of the 50 questions
for example to the first question: “this software responds
too slowly to inputs” it has the following histogram
shown in Fig. 1.

Figure 1 shows that, 7 users, 1.e,, 29.1% say that the
software responds very slowly to the inputs and that 13
users, i.e., 54.1% say they disagree with the previous
statement.

For question 12 “Working with this software 1s
satisfyng” it has the following histogram shown in Fig. 2.

istinct: Type: nominal unique: 0 (0%
Missing: 0 (0%) Distinct: 3 yp q (0%)
[No.  Labd Count
1 IDe_acuerdo 7
7 [indeciso 4
| 3 |En_desacuerdo 13
[ |
Class: Eficiencia_1 (Nom) v |Visudize All
13
7
4

Fig. 1: Histogram for question 1
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No. Label Count
1 De_acuerdo 20
2| Indeciso 3
3 En_desacuerdo 1

20
3
N .

Fig. 2: Histogram for question 12

No. Label Count
1|De_acuerdo 3
2 Indeciso 4
3/En_desacuerdo 17
17
3 4

Fig. 3: Histogram for question 27

Figure 2 shows that, 20 users, 1.e., 83.33% say that
working with this software 1s satisfying.

For question 27 “using this software is frustrating” it
has the following histogram shown in Fig. 3. Figure 3
shows that, 17 users, ie., 70.83% say they disagree that
using this software 1s frustrating.

This research does not need to perform data
transformation in any of the variables because they are all
categorical, a condition that must be met when applying
the unsupervised techmque “association rules” which 1s
used for this descriptive analysis seeks to know how the
different variables associated with each of the 50
questions of the immersive environment.

Fmally, the “A priori” method 1s applied to determine
how the different variables associated with each of
the 50 questions of the immersive environment survey are
related.

By applymg the a priori method, the rules or
associations are obtained; it is specified that no class
attribute is configured in the Weka Software, an
evaluation measure of 90% and a number of rules of 40,
taking into account mumber of variables.

RESULTS AND DISCUSSION
When applymg the ummonitored techmique
“association rules” to discover trends (co-occurrences)
and relationships between variables associated with the
immersive environment survey, the following rules are
observed (for evaluation and interpretation purposes,
6 rules were chosen).

Rule 1: When approximately 80% of students (users)
agree that “the information given by the software” can be
understood and guided (question 23-utility 3) that
percentage also agrees that “T would recommend this
software to my colleagues” (question 2-efficiency 2);
Then it can be said that a good information guide
generated by the immersive enviromment ensures that

students recommend their colleagues to work (study and
learn) with this.

Rule 2: When approximately 80% of students (users)
agree that “the orgamization of the menus seems quite
logical” (question 33-control 3) also that percentage
agrees that “T would recommend this software to my
classmates™ (question 2-efficiency 2); then it can be said
that a logical organization of memnus m the mnmersive
environment ensures that students recommend their peers
to work (study and learn) with this.

students
“Instructions and aids are

Rule 3: When approximately 80% of
(users) agree that
useful” (question 3-eficiency 3) and at the same time
another 80% agree that “I emjoy working with this
software” (question 7-efficiency 7) also that percentage
agrees that” I would recommend this software to my
colleagues” (question 2-efficiency 2); Then it can be said
that the existence of useful instructions and help and
enjoy working with the immersive environment ensures
that students recommend their colleagues to work (study

and leam) with this.

Rule 4: When 75% of students (users) disagree that
“software is inconsistent” (question 21-utility 1) that
percentage also agrees that “I would recommend this
software to my classmates” (question 2-efficiency 2);
Then it can be said that the immersive environment is
consistent for the student’s perception ensures that
students recommend their peers to work (study and learn)

with this.

Rule 5: When 75% of students (users) agree that
“Working with this software 1s satisfactory” (question
12-mfluence 2) and at the same time another 75% agrees
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that “T can understand and guide me through information
given by the software” (question 23-utility 3) that
percentage also agrees that “The way i which the system
presents the information is clear and understandable
“(question 13-influence 3).

Rule 6: When approximately 80% of students
(users) agree that “I can understand and be guided
by the information given by the software” (question
23-utility 3), 75% of students (users) that “T enjoy when
I work with this software” (question 7-efficiency 7), then
1t can be said that a good guide m the information given
by the immersive environment ensures that students
enjoy studying and learning with the environment.

CONCLUSION

With the descriptive analysis made to the survey
associated to the immersive environments to know
how the different variables associated to each of the
50 questions, through the unsupervised technique: “rules
of association” it can be concluded that this technique
offers valuable information to re-design or strengthen
aspects of the immersive environment taking into account
the results of the preliminary study.

For example, it can be observed that a good design of
mformation guides, orgamzation of menus and useful
mstructions generates that the users enjoy using the
immersive environment for the study and learning and
that this one is recommended to its companions.

RECOMMENDATIONS

As future research can be mentioned that for the
technique of association rules due to the large number of
variables it 13 necessary to perform analysis with more
rules to take into account important aspects for the final
design of the immersive environment in addition to
performing a descriptive analysis of all rules.
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