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Abstract: Extraction of information from a database is a major issue these days. There is huge amount of

mformation available in web i the form of web pages which 1s used to extract as per the need of the user to
perform a vital task. To overcome this issue of information retrieval various techniques are known today like

clustering, classification, natural language processing techniques etc. In this study, we have discussed various

clustering methods algorithms with various features to classify the data. k-means clustering algorithm is majorly

used to cluster the data which 1s also focussed m this study. The capability of k-means clustering algorithm

15 due to its computational competence. k-means 13 a clustering techmque m which similar data points are
grouped into clusters. In this study, we have proposed a clustering algorithm based on the density of data

points and used Manhattan distance for grouping the data points mto a cluster. It has been empirically found

that the results of proposed clustering algorithm provide better clusters as compared to existing clustering

algorithms.
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INTRODUCTION

In general, the process of analyse/examine the
relevant data from different extents is called data mining.
It 1s an mterdisciplinary subfield of computer science
which focuses on the retrieval of relevant information
from the large databases. It also focuses the change of
retrieved data into understandable and readable manner.
Tt is a basic process of exploring the data from different
areas to use it for various different purposes like data
managing in big areas.

Data classification techmiques can be supervised or
unsupervised. One of the most widely used techniques is
to classify the data set into different clusters commonly
referred to as clustering. Clustering is grouping of similar
data or information. Clustering can be categorized as
follows: herarchical, spectral clustering, grid based,
density based and partitioning based clustering
(Maulik and Bandyopadhyay, 2002).

Hierarchical clustering algorithm data 1s classified in
the form of atree. Tt is further categorized in two types,
1e., agglomerative and divisive. Spectral clustering
algorithm is an algorithm in which data points are
portioned by means of similanty matrix. This research
in three stages, i.e., pre-processing which focus on
building of similarity matrix, construction of Eigen

vectors which is done by spectral mapping, post

processing  which  deals with grouping data
points.

Grid based clustering algorithm is an algorithm in
which operations are done on grids and that grids are
formed by the objects space. The major advantage of this
algorithm 1s that this does not need the computation of
distance and further the clustering 1s done based on the
obtained summarized data points, the complexity of this
algorithm is (O).

Density based clustering algorithm in an algorithm in
which a cluster 1s continuously growing till the density in
the region surpasses the threshold. Tt requires only a
single scan of the input data sets and parameters
associated with density which are to be imitialized.

Elavarasi et al. (2011) partitioning clustering
algorithms divide the data pomts into k partition and each
constructed partition signifies a cluster. Tt has two
properties each group should contain an object and each
object should belong to one group. Partitioning clustering
is also known as non-hierarchical clustering as every
instance 1s positioned n precisely one of k commonly
exclusive clusters. In this clustering, the user needs to
mput the preferred count of clusters k as only a
single set of cluster is the outcome of a typical

partitioned clustering algorithm. One of the utmost

Corresponding Author: Himanika, Department of Computer Science and Engineering, Faculty of Engineering and Technology,
Manav Rachna International University, Fridabad, Haryana, India
5485



J. Eng. Applied Sci., 12 (21): 5485-5489, 2017

frequently used partitioned clustering is k-means. As
discussed, in this clustering the user needs to give the
count of clusters (k) and from computation pomt of
view the algorithm initiates the centres also called
centroids of the k partitions.

In this study, we focussed on k-means clustering
which can be applied on data like numeric, categorical
and mixed data (Lun et al., 2012). In general, k-means
clustering data in divided into different clustering by
selecting centroids for clusters. Imtially algorithm takes
two inputs, i.e., the dataset having n number of objects
and k number of clusters that are going to be created.
Firstly, the centroids are selected randomly and then data
points which were input are allocated to clusters by
measuring the Euclidean distance. Next, when all the
available input data points are allocated to some number
of clusters, the first iteration 1s executed and the steps are
repeated until the desired objective function is attained.
The computationally time complexity of this is (nkl) where
n 1s the mput of data pomts, k be the count of clusters
and 1 are the number of iterations needs to be performed.
In the proposed algorithm, an approach to systematically
selecting the initial centroids has been proposed. In this
mutially, the given data points are plotted in 2D. All the
data points should have positive values and if negative
value then first is converted into positive value this is
necessary because distance 1s calculated from the
origin.

LITERATURE REVIEW

Goyal and Kumar (2014) have given an algorithm in
which centroids are selected randomly and they used
Euclidean distance metric to assign data points to the
random clusters. After assignment of all the input data
points to some cluster first iteration 13 completed and then
the same process will start in clusters too and this process
needs 3 iterations. This is computationally expensive
its tume complexity 18 very high m terms of mput
dataset, clusters and iterations and result for this
algorithm depends on the mput it can vary for multiple
runs.

Arockiam ef al. (2012) explamed the concepts of
clustering using Hierarchical method which 1s further
divided in to two parts Agglomerative and Divisive
algorithms; Partitioming Methods which 1s  further
divided into 4 parts relocation, probabilistic, k-means,
density-based which 1s further divided into two parts
connectivity and functions clustering. k-mean is part of

partitioning clustering which partitions a data set into a

cluster. This is how a k-means help us to divide input
dataset into clusters. Tt considers the input of clusters to
group data mto and the dataset. It constructs the k maitial
clusters from the dataset by selecting k rows of datasets
randomly. For example, if there exists 10,000 mumber of
rows in the dataset, then for the first step k = 3 initial
clusters will be constructed. Each of these three mitial
clusters consists of one row of
datasets.

V1j and Kumar (2012) has proposed a 2D algorithm in

which centroids is not selected randomly. Tt was basically

designed will

improved k-means algorithm in which mnitial centroids are
selected using the researchers proposed algorithm. When
the data sets containing the negative values then firstly
that negative value is converted to positive. Next, the
minimum values are computed for all x and y-axis. So, this
will make all the data poimnts have positive value now
these values form the boundary of rectangle which is
divided into k clusters. After selecting the centroids
distance of each centroid 18 computed in comparison
to each centroid.

MacQueen in 1967 proposed the k-means algorithm
which is well known method for clustering. However, the
research illustrated by various indicates the result of
k-means is quite sensitive to initial selection of random
centres. When the centre closes to the final solution, it
efficiently assigns the data to the appropriate cluster
centre. Otherwise, k-means will get incorrect clustering
results and have weak performances. After that further
many methods have been proposed to deal with cluster
imtialization for k-means. After comparing many of the
methods (Lan et al., 2015).

Shehroz and Ahmad mtroduced a Cluster Center
Initialization (CCIA) for k-means. The basic idea of CCIA
is observing that some of the pattern are very similar to
each other and that 13 why they have same cluster
membership which males it independent on initial cluster
centres. In this study, the authors proposed an algorithm
for centres mtialization for k-means based on density
peaks (CTDP).

Elavarasi et al. (2011) proposed the review on the
partition clustering algorithms. In this study, the
researchers describes the operational performance, the
procedures to be monitored and the restrictions which
affects the enactment of the algorithm. The authors also
discussed the various different types of clustering
algorithms.

Various researchers have given different approaches
for clustering. Although, they have covered many
applications but there are some issues that are still
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need to be challenged. In our proposed algorithm we
will give an algorithm for clustering the data set.

K-MEANS CLUSTERING

As discussed above the k-means clustering needs
two inputs the data set and the count of clusters required.
This helps us to classify n number of data points into k
clusters. Similarity of clusters is known by measuring the
Euclidean distance between the objects. Various distant
metrics can also be used along with Euclidean distance
like Manhattan distant metric, Minkowski distance metric,
Mahalanobis metric, etc. Now take the mean value of
clusters as centre of gravity. Firstly, the centroids are
selected randomly as the centre of cluster and every data
point 1s allocated to a given cluster by computing the
Euclidean distance for considering the computational
efficiency. When all the input data ponts are assigned to
some clusters then first iteration is done. Then algorithm
starts new iteration and then again we find the new
centroids and finally a situation will come when the
algorithm will attain its objective function due to which
the centroids or the data point do not change their cluster
which illustrates the convergence measure for clustering.
The k-means approach is given in Algorithm 1 as:

Algorithm 1:

Input: w=v1, v2, v3, ... ..,vn
Output: k =The count of preferred chisters
Method:-

i select centroids known as initial centroid
ii ¥ each data point compute Euclidean distance as:

dis((x. v)). (8, b) = 1’(x-a)2 +(ybY

iii  Compute mean (n) till the convergence is met

This algorithm is easy to implement on large datasets
but it has some limitations too. This algorithm 1s
applicable only for numeric data only this can’t be applied
for categorical data.

The above k-means clustering is done by using the
Euclidean distance and as discussed we can use multiple
metric for computing the distance lk-means like
Manhattan, Minkowski, ete. (Sinwar and Kaushik, 2014).

K-means using Manhattan distance metric: Manhattan
distance is used for calculating the complete difference
between the two points as distance xy = |x,-X,[+y-y |
(Algorithm 2).

Algorithm 2:

Input set of data points v and ¢ clusters v = v1, v2, ¥3, ..., vn//data points
and ¢ =cl, ¢2, ¢3, ..., /clusters

i ¥ every data point and selected centroid compute Manhattan distance
as:

xy =|x7%; [H ¥,y |

ii Calculate new centre using the formula:

T

iii  Re-compute distance using Manhattan between new cluster and each
data point
iv  Repeat until (¥ data points)-> cluster (ci)

K-means wusing Minkowski distance metric: The
Algorithm 3 describes the steps followed by k-means
using Minkowski distance metric:

Algorithm 3:

Input set of data points and clusters. v = v1, v2, v3, ..., vn //data points
and ¢ =cl, ¢2, c3, ..., cn //clisters

i Choose cluster centre *v;* randormly

il ¥ data point and selected centroid Compute Minkowski distance as:

dist (xy) = x;,-x,

iii ~ Calculate new centre using the formula:

e

iv  Assign data point with min (dist (xy) to the cluster
v Re-compute the distance between each available data point and the
newly created cluster

In conclusion by analysing the results of different
distance metric, it 1s noted that k-means 1s done using the
Euclidean distance because it gives the most efficient
result and moreover, it 1s space orlented result for
k-means using Manhattan and Euclidean 1s almost same
it’s just that Manhattan gives the more distortion
(Singh et al., 2013). In next subsection, we will discuss the
algorithm related for two-dimensional datasets.

ALGORITHM FOR 2D DATA

In 2D clustering algorithm, 2 dimensional dataset is
taken as input like numeric data having both positive and
negative values. If the data sets contaimng the negative
values then firstly that negative value i1s converted to
positive value so that all input data pomnts lie on the
1dentical plane. The mm value for x-axis will be x_;, and min
value for y-axis will be v,;,. Then all the data points from
the data sets are subtracted from the mimmum values.
Now, all the data points have positive value now these
values form the boundary of rectangle which is divided
into k clusters. After selecting the centre data point
distance of each data point is computed with respect to
each centroid. Steps for improved 2D algorithm are given
in Algorithm 4 as follows:
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Data points X Y Computed X Computed Y
D, 5 2 10 13
D, 5 3 5 13
D; 4 3 11 12
D, 4 4 4 12
Ds -5 -3 5 3
Ds -4 6 14 4
D, 7 5 13 15
Ds 3 2 11 6
Dy 4 2 4 6
Dy 4 6 12 14
Dy, -6 8 2 16
Dy, -5 -8 3 0
Dy -8 3 0 5
D 1 6 0 14
D, 1 -6 9 2

Table 2: Comparative analysis of sample dataset
Clustering algorithm

Count of iterations

k-means 3
2D algorithm for k-means 2
Algorithm 4:

Input: P= {p;, ps P3 ..., P} where P are 2D points

Output: M= {M,, M,, ..., M,} where M are the formed clusters

1. I g (+ve, -ve) data points in input data set then go to step 2 else go
to step 3

2. Cormpute X, ¥x and v, ¥y cordinate

3. Subtract each data point with the minimum attribute value as obtained
in step 2

4. Obtain the rectangle boundary wvalues: compute min(x), max(x),
min(y), max(y)

5. Next, construct cluster from the rectangle by dividing it into k parts
such that each part represents a cluster

6.  ¥each cluster -> assign data points: compute dis (3 data point). //data
points assigned based on distance computed

7. Repeat

8. ¥ data point computed di» centroid ¢j 1T each cluster j -+ assign data
points./for each cluster data points are assigned

9. Set cluster d[i] =j

10, Set Dist[i] = d(dillgj)

11.  ¥each cluster d; (I< =j < =Kk), re-compute the centroids

12, If dis <= present nearest distance ,then data point 5 same cluster//dis
is the distance computed

13.  Else

14, ¥ centroid c¢j(l< = j< = k) compute the dis(dillcj) //distance
computed between di and ci

15, end¥

16.  Repeat until the objective function is met

Illustrative example of 2D algorithm: Table 1, we have
taken a sample dataset with 15 points and showing their
x and y-axis also x and y computed, respectively. Firstly
find the min value on x and y-axis x,,, ¥x and y,;, ¥y
subtract ¥ data points as shown in computed values of
Table 1. Now find the minimum and maximum from this
new table x, = 0 x_. =14y, =0, v,..= 16 Boundary
values (14.0) and (0.16).

Now form a rectangle and divide it in to 4 parts with
4 centroids (R, R, Ry, RO R, = (3.5,12), R, =(10.5,12),

R, =1(3.5,4), R, = (10.5, 4) Following are the iterations as:

Iteration 1: R,->D,, D,, D, R,=~D,, D;, DDy, Dy, R>D,
D, Dy, Dys Ry-=D;, D D15

4 ° 7 .
£ g e ° o ©
.g h S o Tfme o o og o °
> 34 og %280 o o gCg8ak o, oo
< o 7 BB.188sgg®te °o 5
oo et °
e
45 5.0 55 6.0 65 70 75 8.0
Sepal. length

Fig. 1: K-means clustering

Iteration 2: R->D,, D,, D, R,->D,, D,, D, D, Dy,
R;->Ds, Dg, Dy, Dy Ry->D;, Dy, D

Next in Table 2, we provide the comparative analysis
of k-means, algorithm for the sample dataset taken in
Table 1. Table 2, we give the number of iterations
respective to each of the algorithm. It illustrates that that
2D algorithm used for clusterng 1s more efficiently
computed to select mitial centroid for assigning data
points to each of the constructed cluster.

The k-means also stemmed nto precise output but it
is complex in terms of space and time. In comparison to
this existing our proposed algorithm the initial centroids
are not considered randomly but computed so that, we
move to right direction. The cluster formation of the
abovek -means on the sample data set is also shown in
Fig. 1.

PROPOSED ALGORITHM

In this study, we will discuss an approach for
dividing the 2D data pomnts based on the Manhattan
distant metric and systematic selection of centroids using
density. The centroids are selected based on density so
that different runs on algorithm on the same dataset
produce the good quality result. As discussed earlier, to
divide 2D clusters we have to convert all data points to
some positive value but in proposed algorithm there is no
need to take the positive values. We are using Manhattan
distance because it gives the low distortion as compared
to Buclidean distance. Improved efficient 2D algorithm 1s
given in Algorithm 5 as follows:

Algorithm 5:

Algorithm 5: Input: D ={d, d,, ..., d,}

Output: C={C, C,, ..., Cy

Steps:

i Find the density denoted by a symbol k of each data point as & =
X/ Y0, 01 %t

ii Data points with max(3 P are selected as centroids

iii  Compute Manhattan distance a(data point and cluster centroid) as:

dis(XY): | XmXy [+ ¥1°¥2 |

iv  Data point with min (dis(xy) » cluster ¢,
v Continue ¥ data point » ary cluster ¢,
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Tllustrative example: Suppose data points taken are Py (2, 5), Py(-3, 5), P;
(3.4, Py (-4.4), P5(-3,5), Ps(6.-2)
i density of each data point by the formula given above
P2 = 198 P3 =049 P4 =0,P5 =33
ii Points with highest density as centroids using the formula
AX /(Y +0.01=x where o is the constant with value 0.5 and & is the
density, i.e., p5, pé
il Compute dis(xy) for each data point wr.t centroids xy) =|x;-
3| Hy -yl

Distances from Ps: P, =15, P, = 10, P; =15, P, = 16 and distances
fromPs: Py =13,P,=18,P; =9,P, =18
iv. Now data points will fall into cluster to which they are closer: P2, P4
will fall to cluster P5 and P1, P3 will fall into cluster P6. First iteration will
get completed here
v Same points will get repeated now in the clusters P5 and P6

P1 =0.49,

CONCLUSION

In this study, review of clustering tools and
techmques 1s presented and an algorithm for k-means
clustering for 2D data set 1s proposed. The data 1s divided
based on the demsity to make it more efficient as
compared to the other existing algorithms. We have found
that after using the density concept, there is no need to
differentiate the positive and the negative data points and
also Manhattan distance metric gives low distortion value
as compared to Euclidean. The major drawback for
k-means algorithm for 2D data set was to firstly
differentiate the positive and negative points then start
clustering. In the proposed research there 1s no need to
differentiate between the positive and negative pomts as
the 1mitial centroids are chosen according to the density
of the data points.
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