Tournal of Engineering and Applied Sciences 12 (20): 5301-5306, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Design and Implementation of an Audio Parser and Player

T. Anu Radha, K. Aruna Manjusha, R. Karthik, Mahendra Vucha and A L. Siridhara
Department of Electronics and Communication Engineering,
MLR Institute of Technology, Hyderabad, India

Abstract: Audio parsers are applications that scan through a particular file and extract information from them.
Parsers are mainly used in design applications to test encoders and also in design of codecs. Players are needed
to play the files. Very few parsers are available that can parse as well as play audio files. Also, most players
available do not display parsed information. So, a well-designed audio parser and player 1s needed. Our project
is to design a gui application that can parse and play audio files. The codecs supported are MP3 and AAC. In
AAC, the ADIF and ADTS formats are supported. 1D3v2 tags too are parsed and displayed. An audio player
in integrated to play the files from the application itself. Also, features are added to the player to enhance the
functionality. Play, pause, stop and seek features are supported. The application can be easily extended to other

codecs.

Key words: Audio parser, codec, VC+H, MPEG, ID3, seek features

INTRODUCTION

Parsers are programs that read (scan) through a file
and extracts mformation from 1it. Audio parsers are needed
to extract information such as the format used to code the
file, the bit rate, the sampling frequency, etc. In design
applications such as testing a codec, it i3 necessary to
test the performance of the codec against corrupt frames.
An audio parser helps to identify such corrupt frames. In
designing new encoders, the encoded file can be parsed
to check whether it 15 mn the actual format needed. Parsers
also are used as a quick reference for finding information
from audio files. Audio players are needed to play audio
files.

As of today there are many audio playing and
parsing applications available. One of the well-known
audio parser applications is Microsoft® Corporation’s
“Wmdows Media ASF View 9 series” which parses file of
type .mp3, .asf, wma and .wmv. However, this application
like other parsing applications does not have a built in
player to play the parsed files. On the audio players side
the most popular cnes are Winamp, Windows Media®
Player, Foobar, Real® Flayer, etc. However, these players
are suited for end user applications and not for design
applications. The reason is that most of these players do
not display the parsed audio information. For design
applications, we have audio tools such as Goldwave or
cool edit pro, ete. But these give audio information and
modification but not frame mformation (Schildt, 2001,
Balaguruswamy, 2001, British Standards Institutions,
1997). So, we require a well-built audio parser and player
to do all the above menticned tasks.

The MPEG Layer I codec or the MP3 codec is one
of the most popular digital audio encoding formats
(Raissi, 2002). Tt iz the most well-known lossy
compression format. It was invented and standardized
m 1991 by a team of engineers working in the
framework of the ISO (International Organization for
Standardization)/TEC ~ (International — Electrotechnical
Commission) MPEG (Motion Pictures Expert Group) audio
committee under the chairmanship of Professor Hans
Musmann (University of Hannover-Germany).

The MP3 encoder compresses an original PCM audio
file by a factor of 12 without any noticeable quality loss.
The MP3 format enables variable bit rate encoding. It also
allows different sampling frequency and various channel
modes.

The MP3 format uses at its heart, a hybrid
transformation to transform a time domam signal mto a
frequency domain signal:

¢ 32-band polyphase quadrature filter

¢+ 36o0r12tap MDCT, size can be selected independent
for sub-band 0...1 and 2...31

» Aliasing reduction postprocessing

Tt also employs several techniques such as:

+ Huffman coding

*» MDCT/modified discrete cosine transform
» Non linear quantization with scaling

» Intensity stereo, part of jomnt stereo

s M/Smatrixing, part of joint stereo

» Lattice quantization for high frequencies

Corresponding Author: E. Karthik, Department of Electronics and Communication Engineering, MLR Institute of Technology,

Hyderabad, India

5301

J. Eng. Applied Sci., 12 (20): 5301-5306, 2017

GUI wrapper
MP3 parser AAC parser
ji ID3 Tag Parser
MP3 decoder AAC decoder

Fig. 1: Overall functional diagram

Block diagram: The overall functional diagram of the
parser and player 1s as shown in Fig. 1. The GUI wrapper
along with the glue logic integrates the parsers and
decoder as a single working entity (Fig. 1).

Approach to problem solving: In development of this
application, we use Object Ornented Programming (OOP)
approach. Object oriented programming has the followimng
striking features which make it a good choice for software
development.

Data abstraction and encapsulation: The wrapping up of
data and functions into a single umt i1s known as
encapsulation. This feature makes each module as a
separate entity which cannot be corrupted from outside.
Thus each module can be developed and tested
individually and when integrated with rest of the modules,
it 18 assured to work correctly. This principle of data
hiding helps the programmer to build secure programs
that cannot be mvaded by code in other parts of the
program.

Inheritance: Inheritance 1s the process by which objects
of one class acquire the properties of another class. It
supports the concept of hierarchical classification. This
feature helps in easily extending the features of an already
designed module to incorporate minor changes or
extensions. Thus everything need not be designed from
scratch again. This helps in eliminating redundant code
and extends the use of existing classes.

Partitioning;: 1t 1s easy to partition the reseach in a project
based on objects. Software complexity can be easily
managed. Hence, development of the application can be
done part by part and then integrated without posing any
problems.

Choice of programming language: The programming
language that we have chosen is C++ C++ has a
mumber of features which make it an appropriate
choice. C++ is a versatile language for handling very

Sync
ID Layer Prot. bit
Bitrate
Frequency Pad. bit Priv. bit
Mode Mode extesion
Copy Home Emphasis

Fig. 2: MP3 header layout

large programs. Tt is suitable for virtually any
programming task including development of editors,
compilers, databases, commumication systems and any
complex real-life application systems. CH+ supports object
oriented programming which suits our need. Since, the
syntax and semantics of C++ program 1s very similar to C,
it makes learning this language quite easier. Moreover,
C++ provides constructs to access and modify bit-fields.
C++ also provides features that help in mtegrating audio
decoders and players (exe files) to the existing application
to extend its capability. Thus, C++ proves to be an optimal
choice.

MATERIALS AND METHODS

Design of MP3 parser and ID3 tag parser

MP3 frame layout: An MP3 file 15 made of smaller
fragments called frames. Each frame stores 1152 audio
samples and lasts for 26 msec. This means that the frame
rate will be around 38 fps. In addition a frame is
subdivided into two granules each contaimng 576
samples. Since, the bitrate determines the size of each
sample, increasing the bitrate will also increase the size of
the frame. The size is also depending on the sampling
frequency according to Eq. 1:

144xbitrate +padding[bytes] (1)

Sampling-frequency

The frame layout is as shown; header, CRC, side
information, main data, ancillary data.

5302

J. Eng. Applied Sci., 12 (20): 5301-5306, 2017

Table 1: MP3 frame bitrate

Bits MPEG-1 layer I MPEG-1 layer T MPEG-1 laver TTT MPEG-2 laver T MPEG-2 layer IT MPEG-2 laver TIT
0000 - - - - - -
0001 32 32 32 32 32 8
0010 64 48 40 64 48 16
0011 96 56 48 96 56 24
0100 128 64 56 128 64 32
0101 160 80 64 160 80 64
0110 192 96 80 192 96 80
0111 224 112 96 224 112 56
1000 256 128 112 256 128 64
1001 288 160 128 288 160 128
1010 320 192 160 320 192 160
1011 352 224 192 352 224 112
1100 384 256 224 384 256 128
1101 416 320 256 416 320 256
1110 448 384 320 448 384 320
1111 448 384 320 448 384 320

Frame header: The frame header 1s 32 bits long and
comtains a synchronization word together with a
description of the frame. The synchronization word found
in the beginning of each frame enables MP3 receivers to
lock onto the signal at any point in the stream. The layout
of the frame header 15 as shown in Fig. 2. It consists of the
following fields.

Sync (12 bits): This is the synchronization word
described. All 12 bits must be set, 1.e., “1111 1111 1111™.

ID (1 bit): Specifies the MPEG version. A set bit means
that the frame 1s encoded with the MPEG-1 standard 1f not
MPEG-2 1s used.

Layer (2 bits): This field tells what layer is being used.
Here 00 is reserved, 11 is used for layer 1, 10 for
layer 2 and 01 for layer 3.

Protection bit (1 bit): If the protection bit is set, the CRC
field will be used.

Bitrate (4 bits): These four bits tells the decoder in
what bitrate the frame 1s encoded. This value will be the
same for all frames if the stream 13 encoded using CBR.
Table 1 show the bitrate corresponding to each layer.

Frequency (2 bits): 2 bits that give the sampling
frequency. Table 2 show the frequency values used for
different versions. Further fields are as follows.

Padding bit (1 bit): An encoded stream with bit rate
128 kbit/s and sampling frequency of 44100 Hz will create
frames of size 417 bytes. To exactly fit the bitrate some of
these frames will have to be 418 bytes. These frames set

the padding bit.
Private bit (1 bit): One bit for application-specific triggers.

Mode extension (2 bits): These 2 bits are only usable in
joint stereo mode and they specify which methods to

Table 2: MP3-sampling frequency index

Bits MPEG 1 MPEG 2 MPEG 2.5
00 44100 Hz 22050 Hz 11025 Hz
01 48000 Hz 24000 Hz 12000 Hz
10 32000 Hz 16000 Hz 8000 Hz
11 Reserv. Reserv. Reserv.

use. The joint stereo mode can be changed from one frame
to another or even switched on or off. Table 2 shows how
to interpret the bits.

Copyright bit (1 bit): Tf this bit is set it means that it is
illegal to copy the contents.

Home (original bit) (1 bit): The original bit indicates 1if 1t
1s set that the frame 13 located on its original media.

Emphasis (2 bits): The emphasis mdication 1s used to tell
the decoder that the file must be de-emphasized, 1.e., the
decoder must “re-equalize” the sound after a dolby-like
noise suppression. It is rarely used.

Design of the MP3 parser: The parsing of an MP3 file
consists of the following steps.

Sync word detection: Two consecutive characters are
read from the MP3 file from the beginning of the file.
Using bit masks “ff” (in hex) on the first character and
“f0” (in hex) on the second character, sync word detection
for 12 contimious 1°s 1s carried out Occurrence of
121’s indicates the begimming of an MP3 frame. The
position of the first frame mn the file 13 recorded. It 15 used
in parsing ID3 tags (if any, present) explamned later
(Nillson, 2000).

Parsing the header: The size of the MP3 frame header
including the sync-word 1s 4 bytes (4 characters). Since,
first 2 bytes have already been read during sync
word detection, the next 2 bytes are read and assigned to
2 characters. Using bit-masks different fields of the
MP3 frame header are extracted and are stored m a
structure “mp3 frame hdr content™ Tlis mformation

5303

J. Eng. Applied Sci., 12 (20): 5301-5306, 2017

Table 3: MP3 mode extension

Mode extentions Values
Stereo 00
Joint stereo 01
Dual channel 10
Single channel 11
also contains the sampling frequency index and

bitrate index. Table 1-3 are stored in structures named
“bitrate calc” and “mp3 freq cale”. TUsing these
structures as lookup tables the bitrate and the sampling
frequency used is found out.

RESULTS AND DISCUSSION

Extracting the parameters: Having obtained information
like sampling frequency, bitrate from the file. The size of
the MP3 frame 1s found usmg Eq. 1. We repeat the
equation here for convenience:

144xbitrate

Sampling-frequency

+padding[bytes) (1

Additional information like the duration of the

MP3 frame 13 also found out. It can be found out using
the Eq. 2:

Duration = (1152/sampling_frequency) (sec) ()
Writing parsed information: The parsed header
nformation 18 written to an intermediate file
“frame outputtxt”. Another file “inter.txt” records the
beginning position of each frame in the “file
frame output.txt” and frame length of each frame. This file

acts as a pointer to “frame outputtxt”. Tt is used in
displaying parsed information.

Writing data: Using the MP3 frame size computed
(which mcludes the header) mp3 data 1s read byte by byte
and written on to the file “frame output.txt”. After thus
step, we go back to step 1 and again sync word detection
is carried out and the next four steps are repeated till end
of file 1s reached.

ID3v2 tag format: The TD3 tag is laid out as:

* Header (10 bytes)

* Extended header (variable length, optional)
¢ Frames (variable length)

¢ Padding (variable length, optional)

* Footer (10 bytes, optional)

Tag header: The first part of the TD3v2 tag is the 10 byte
tag header. The layout of the D3 header is as:

» ID3(3)
VER (2)
» Flags (1)

» Size of the tag (4)

There are four parts in the header and no of bytes
occupied by each part 13 mentioned in the braces. The ID3
field 1s the first part which occupies three bytes holding
the characters “TD3”. This is followed by two bytes VER
field that indicate the version number. The version is
followed by the ID3v2 flags field of the 8 bits allocated
only 4 bits are used. So, thus has the form abed0000.

Flag a (7th bit), unsynchronisation: This indicates
whether or not unsynchromisation (explained later) 1s
applied on all frames a set bit indicates usage.

Flag b (6th bit), extended header: This indicates whether
or not the header 1s followed by an extended header. A set
bit mdicates the presence of an extended header.

Flag ¢ (5th bit), experimental indicator: This flag will
always be set when the tag 1s in an experimental stage.

Flag d (4th bit), footer present: This flag indicates thata
footer 1s present at the very end of the tag. A set bit
indicates the presence of a footer.

The next four bytes tell the size of the ID3 tag
including the extended header, the frames and padding. Tt
1s stored as a 32 bit synch safe integer. Sync safe integers
are integers that keep its highest bit (bit 7) zeroed, making
seven bits out of eight available. Thus, a 32 bit sync safe
integer can store 28 bits of information. For example,
255 (11111111),, encoded as a 16 bit sync safe integer is
383 (00000001 01111111),

Padding: Tt is optional to include padding after the final
frame (at the end of the ID3 tag), making the size of all the
frames together smaller than the size given in the tag
header. A possible purpose of this padding 1s to allow for
adding a few additional frames or enlarge existing frames
within the tag without having to rewrite the entire file. The
value of the padding bytes must be 0x00. A tag must not
have any padding between the frames or between the tag
header and the frames. Also, the footer and padding are
mutually exclusive.

Frames: The frames are laid out as follows:

¢ Frameid Ox XX XX XX XX
¢ Framesize: 4x(0XXXXXXX)
» Flags Ox XX XX

¢ Data Ox.....

5304

J. Eng. Applied Sci., 12 (20): 5301-5306, 2017

The first four bytes together form the frame id which
is made out of the characters capital A-7Z and 0-9.
Tdentifiers beginning with “X”, “Y” and “7” are for
experimental frames and free for everyone to use. The
frame 1D 1s followed by a size descriptor containing the
size of the data i the final frame. The size 1s excluding the
frame header which is nothing but “total frame size”
10 bytes and stored as a 32 bit sync safe integer. A tag
must contain at least one frame. A frame must be at least
1 byte big, excluding the header. The frame status flags
are in the form (0abcO000 OhOOkmnp).,,. The status flags
are explained.

Tag alter preservation: This flag tells the tag parser
what to do with this frame if it is unknown and the tag is
altered in any way. This applies to all kinds of alterations
mcluding adding more padding and reordering the
frames:

¢ 0 frame should be preserved
¢ 1 frame should be discarded

File alter preservation: This flag tells the tag parser what
to do with this frame if it 15 unknown and the file,
excluding the tag is altered. This does not apply when the
audio is completely replaced with other audio data:

* O frame should be preserved

+ 1 frame should be discarded

Read only: This flag if set, tells the parser that the
contents of this frame are intended to be read only.
Changing the contents might break something, e.g., a
signature. If the contents are changed without knowledge
of why the frame was flagged read only and without
taking the proper means to compensate, e.g., recalculating
the signature, the bit must be cleared.

Grouping identity: This flag indicates whether or not this
frame belongs in a group with other frames. If set a group
identifier byte 1s added to the frame. Every frame with the
same group 1dentifier belongs to the same group:

¢ 0 frame does not contain group information
¢ 1 frame contains group information

Compression: This flag indicates whether or not the frame
15 compressed. A “data length mndicator” byte must be
included n the frame:

* 0 frame 18 not compressed
* 1 frame 1s compressed using zlib (zlib) deflate method

If set, this requires the “data length indicator™ bit to
be set as well.

Encryption: This flag indicates whether or not the frame
15 encrypted. If set, one byte mdicating with which
method it was encrypted will be added to the frame. The
description of the ENCR frame for more information about
encryption method registration. Encryption should be
done after compression. Whether or not setting this flag
requires the presence of a “data length indicator”
depends on the specific algorithm used:

» 0O frame is not encrypted
¢ 1 frame is encrypted

Unsynchronisation: This flag indicates whether or not
unsynchronisation was applied to this frame. Section
6 for details on unsynchromsation. If this flag is set all

data from the end of this header to the end of tlus frame

has been unsynchronised:

¢ 0 frame has not been unsynchronised
» 1 frame has been unsynchronised

Data length indicator: This flag indicates that a
data length indicator has been added to the frame:

s 0 there is no data length indicator
» 1 adata length indicator has been added to the frame

The flags field 1s followed by the field data. The field
data may itself contain various fields depending on the
type. For, e.g., consider the terms of use frame (Frame Td:
user). In this the frame header is followed by a byte which
1s the text encoding frame.

The application has been coded and tested for
various files. The parsed MP3 files have been verified
using the Windows ASF viewer application. Using the
Free AAC encoder (FAAC-main project of which FAAD
is a part) (Sourceforge, 2013) audio samples were encoded
with specific bit rates and sampling frequencies in both
adif and adts formats. These files were tested on the
player and were found to be correct. The features of the
player have also been tested. The player can pause or
play an MP3 or aac file. Tt can also seek through the
file and play from any specified point. The timing display
of the file 1s also tested for various files and 1s found to be
correct.

CONCLUSION

The application has been coded and tested for
various files. The features of the player have also been
tested. The player can pause or play an MP3 or aac file. It
can also seek through the file and play from any specified
point. The timing display of the file is also tested for
various files and is found to be correct.

5305

J. Eng. Applied Sci., 12 (20): 5301-5306, 2017

RECOMMENDATIONS

The future research that can be camried out are
additions of new parsers, other codec parsers can be
added to the code. Using the existing frame index box,
header and data text box we can other parsers to frame
based codecs such as WMA, OGG-Vorbis, FLAC,
etc. Integration of other players;, other audio players
can be integrated with the application. Additions of
features; more features can be added to the code such as
fast forwarding (playing at double or multiple rate),
volume control, etc, can be added using already
parsed data to play the file instead of integrating
another player we can design a player that makes use of
the data parsed by this application to decode and play the
file.

ACKNOWLEDGEMENT

Researchers would like to thank Mr Sanjay Bhat for
his support in carrying out the project.

REFERENCES

Balaguruswamy, E., 2001. Object Oriented Programming
with C++ 2nd Edn., McGraw-Hill Education,
New York, USA., ISBN:9780070402119, Pages: 533.

British Standards Institution, 1997. Information
Technology Generic Coding of Moving Pictures and
Assoclated Audio Information: Advanced Audio
Coding (AAC). British Standards Institution,
London, UK., ISBN:9780580280849, Pages: 147.

Nillson, M., 2000. ID3 tag version 2.4.0-structures, native
frames. D3v2, Linkoping, Sweden. http://1d3.org/

Raissi, R., 2002. The theory behind mp3. Mp3-Tech.Org,
USA. http://’www.mp3-tech.orgprogrammerdocs/
mp3_theory.pdf.

Schuldt, H., 2001. Java 2: The Complete Reference. 4th
Edn., McGraw-Hill Education, New York, USA.,
ISBN:9780072130843, Pages: 1077,

Sourceforge, 2013. Freeware advanced audio coder.
Sourceforge, Fairfax, Virginia. https://sourceforge.
net/projects/faac/.

5306

	5301-5306_Page_1
	5301-5306_Page_2
	5301-5306_Page_3
	5301-5306_Page_4
	5301-5306_Page_5
	5301-5306_Page_6

