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Abstract: Many studies have used different types of genetic algorithm in solving examination timetabling
problem. The solutions of the genetic algorithm are found to be efficient and reliable. This study provides a
comprehensive review of genetic algorithm application in examination timetabling. Tt presents many examples
of using genetic algorithm in finding optimal solutions to the problem of examination timetabling at universities
or institutions. Subsequently, it presents the most used techmiques to solve the examination timetabling
problem such as tabu search and simulated ammealing techniques. The objective of the study 1s to provide an
understanding on what have been achieved in solving examination timetabling problem.
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INTRODUCTION

This study introduces the background study of
evolutionary algorithms which include the idea of genetic
algorithm. It presents the theoretical foundations
related to genetic algorithm, the begimning of artificial
forms, chromosomes and encoding, way of choosing for
dying out or for reproduction, crossover, mutation and
reversal.

The study reviews issues pertaining to timetabling
and scheduling problems, problem solution approaches
traditional solutions and methods. It defines the
examination timetabling soft and hard constraints and the
previous works related to university timetabling problem.
Subsequently, it presents the application of genetic
algorithm in solving examination timetabling problem
and the reasons behind using genetic algorithm in
solving examination timetabling problem. Finally, it
presents the most used techniques to solve the
examination timetabling problem such as Tabu Search and
Simulated Annealing technicues.

Evolutionary algorithm: Evolutionary Algorithm (EA) 1s
a subject of evolutionary computing. EA is a generic
artificial intelligence computational population-based
algorithm employing the metaheuristics optimization
technique. EA mechanism uses the concepts of
biological evolution, reproduction, mutation,
recombination and selection processes (Ashlock, 2006;
Beyer et al., 2002; Eiben and Smith, 2003). Candidate
solutions to the optimization problem play an important
role in a population and the fitness functon
determines the environment within which the solutions
‘live’ (Holland, 1975). Population evolution occurs when
solutions to the optimization problems are repeated.
The process that involves individual’s evolutionary
algorithms is described as Artificial Evolution (AE).

EA is a subset component of AE and it works well in
reaching approximate solutions to all types of problems
because EA does not make any presumptions to the
underlying fitness landscape that has been proven in the
field of engineering, art, biology, economics, marketing,
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genetics,  operations  research, robotics, social
science, physics, politics and chemistry (Giri et al., 2013).

EA has also been used in many experimental
frameworks to validate theories on biological evolution
and natural selection as shown m the works of
(Obaid et al., 2015, Mohammed et «of, 2015; Holland,
1975). The book of JTohn Holland “adaptation in natural
and artificial system™ and De Jong’s “adaptation behavior
of a class of genetic adaptive system” have set the
foundation for the study of Genetic Algorithm (GA). The
complexity of computation 13 a limiting factor inreal
application of EA (Clune et al., 2008), due to fitness
function evaluation. One of the solutions to solve this
limitation 15 using the fitness approximation method
(Clune et al, 2008). The lack of a clear genotype-
phenotype distinction 1s another problem related to EA
(Mohammed et al., 2012).

In real life, living organism fertilized egg cell
undergoes embryogenesis to become phenotype.
Through indirect encoding, the genetic search is more
full-bodied. This process i1s ntended to reduce lethal
mutations and improve the evolution ability of the
organism (Ashlock, 2006). The mdirect encodmng also
enables evolution to take advantage of the regularity in
the environment (Beyer et al., 2002; Mohammed et al.,
2016; Price et al, 2000) that acknowledges five
evolutionary algorithm techniques. These techniques are
similar but different in the implementation methods, details
and the nature of the application. The techmques are
genetic algorithm: the most popular type of EA often
seeks solutions in the form of string of numbers
(binary or reflecting the problem). Genetic algorithm uses
mutation and/or recombination methods for optimization
problems.

Genetic programming: It provides solutions in the form
of computer tools. The fitness of a solution is dictated by
the capability to resolve difficult problems.

Evolutionary programming: It 1s often comparable with
genetic programming. The difference 13 that the design of
the program is fixed and its numerical variables are flexible
to alter or evolve.

Evolution strategy: It uses vectors and normal numbers as
representations to the results and uses same-adaptive
mutation range.

Neuroevolution: Tt resembles a GA programming however
the genomes speak to ANN by portraying structure and
assoclation weights. The genome encoding 13 either direct
or mdirect.

There are many more algorithmic techmques as cited
by Price et al. (2006), Yang and Press (2010). This includes
ant colony optimization, bee’s algorithm, differential

evolution, firefly algorithm, particle swarm optimization.
Harmony search, invasive weed optimization algorithm
and Gaussian adaption are added as additional algorithm
techniques used (Giri et al., 2013).

Liteature review: Optinization of multi-objective facility
layout problems in the area of operational research is
used (Jannat et al, 2011). The study developed
a GA for multi-objective facility layout problems
taking considerations the quantitative and qualitative
approaches. The method generates populations by
crossover and mutation process. The approaches
succeeded in minimizing total material handling cost and
maximizing closeness rating scores and discovered a set
of non-dominated solution (Pareto Optimal) for the facility
layout. The Tune Slot and Subject Group Assignment
(TSSGAP) 15 used by Mushtaq ef a/. (2015) by runmng a
tree search algorithm on the instances. The study
concluded that the TSSGAP is NP-hard and that current
tree search algorithm may able to solve no solution
instances.

GA 1s used for solving small and large instances
timetabling by Zhong et al. (2013). The study modified
some basic genetic operators that restrain the creation of
new conflicts in each character to enhance the algorithm’s
performance. The study reduces scheduling problems
with large number of binary variables to acceptable size
by eliminating certain dimensions of the problems and
including the dimensions into constramts. The reduction
of each gene size 13 done by grouping several of the
binary numbers into one gene value. Such technique
has the possibility of solving the full size problem
(FER schedule), increases algorithm speed in tens of
seconds with the GA approach. By utilizing intelligent
operators, the algorithm converges much quicker than the
basic algorithm and thus the study represents a good
point to solve the FER.

Meta-heuristics is a successful area in solving
timetable problems (Mohammed et al., 2016). Researchers
cautioned that the approach is usually catered for specific
problems and cannot be easily applied to other problems.
Search methods have been improved recently with the
development of hyper heuristics. Tterated Local Search
(TILS) performs significantly better than Tabu search,
steepest descent and variable neighborhood search
methods.

The method employed for high level search is not
important within the graph-based heuristic approach
for examination timetabling problems. Soft constraints
method is used for problem of varying size using GA,
random search, hill ¢limbing and simulated annealing
{(Perzina and Ramik, 2013). The method aums at maximizing
the schedule fitness. The parameters that maximize the
schedule quality are identified after a fixed number of
fitness computations. The study concluded that a naive
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crossover operator of GA performs better than random
search. However, simulated annealing is found to be much
more superior for the search space studied.

MATERIALS AND METHODS

Genetic Algorithm (GA) is a programming technicque
that imitates biclogical evolution as a problem-solving
technicue. Tn aligning with a specific problem, GA fitness
function allows each candidate that needs to be solved to
be quantitatively evaluated. The candidates may be the
solutions and mmplementing GA makes the solutions
better or improves the fitness level (Obaid et al., 2012).
The GA evaluates each candidate at random according to
the fitness function. Most of the time, the evaluation
does not match or work, however by chance a few may
work or even show weak or inperfect activity in solving
the problem. These positive solution candidates are
stimulated, reserved and permitted to reproduce
(Mahdi et al., 2012).

Copies are made in multiple numbers but they are not
made identical to the original. Random changes are
mtroduced during the multiplying process. These digital
offspring are the second generation that proceeds to the
next GA evaluation process and forms a new pool of
candidates that provide better solutions when evaluated
in accordance with the GA fitness function. Reproduced
candidates that carry weak or worse fitness solutions are
discarded. The method works by multiplying candidates
that carry better solution or mereasing the number of
good candidates. Even if in the beginning the chances are
small by random changes and random matching, the pool
of good candidates is large. The process works by
mcreasing the average fitness of the population by each
generation. By repeating the process in many iterations,
a high solution potential to the problem is achieved. The
multiplicity and the evaluation process works in fraction
of seconds. Thus, a solution to the problem can be
attained quickly.

Genetic algorithms have proven to be a powerful
and successful problem-solving techmque (Soule and
Ball, 2001; Fleming and Purshouse, 2002; Park and
Kim, 2017). The strategy has frequently demonstrated the
power of evolutionary principles. Genetic algorithms have
been used widely in a variety of fields that is difficult for
humans te handle. The solutions are more credible,
efficient, faster and of higher complexity than human
engineers can solve.

In many cases, genetic algorithms produce solutions
far better than the programmers who wrote the algorithm.
The process of genetic algorithm is similar to the process
of natural selection as illustrated in Table 1. Genetic
algorithm 1s a heuristic search techmque that replicates
the process of natural evolution. The heuristic 1s used
again and again to produce powerful solutions to

optimization and search problems. Tt is a subset of
Evolutionary Algorithm (EA) that uses optimization
techniques similar to natural evolution. In natural
evolution, a newer generation 1s either stronger or weaker
depending on the type and degree of affect the genes are
exposed to. In any problem-solving situation, the stronger
candidates must be kept and the weaker candidates are
eliminated. In genetic algorithm, a population of strings 1s
called chromosomes, genotype or genome that encodes
the candidates with potential solutions.

A candidate with potential solution is called an
individual, creature or phenotype (Shah-Hosseini, 2009;
Zhang et al., 2007). Before a genetic algorithm can be put
to work to solve any problem, a method of representation
15 used to encode potential solutions m a form that a
computer can process. Iraditionally, solutions are
provided in strings of 0 and 1 sec. The evolution begins
with a randomly selected pool of candidates. The
evaluation process eliminates the weak candidates that
could not potentially provide solutions but retains the
candidates that have some solution potential. The
candidates with potential solution are kept and allowed to
duplicate. The evaluation molds the new generation to be
better fit and as the next generation is duplicated, the
number of fitness candidate increases.

Combmation and mutation occurs randomly
(Fogel, 2006). The new generation 1s used m the next
iteration of the algorithm. The algorithm terminates when
a maximum number of generations has been reached
and/or satisfactory fitness level has been achieved for the
population. Occasionally, a satisfactory solution is not
achieved even if the algomthm terminates due to a
maximum number of generations (Mohammed, 2015;
Fogel, 2006). Other methods of representation include
encoding in array of mtegers or decimal numbers where
each position represents an aspect of the solution. This
method gives better precision and is able to handle more
complex space (Flemmg and Purshouse, 2002).

The third technique 1s to represent each character as
strings of letters where each letter stands for specific
aspect of the solution as used m Hircaki Kitano's
grammatical encoding approach (Thede, 2004). The
advantage of these representational techniques 1s that it
15 easy to identify an operator that causes random
changes to the candidates in the population. Figure 1
shows this technmique.

Program trees are generally used in genetic
programming with noted mathematical expressions. The
construction of a genetic algorithm requires:

* A genetic pool of characters in the domamn that
represent the solution

» A fitness function to evaluate the solution in the
domain
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Table 1: Similarity between genetic algorithm and evolution/natural selection process

Genetic algorithm

Natural selection/evolution

Create pool of candidates/chromosomes/characters in a domain

Delete or eliminate weak potential solution candidates through evaluation process

The candidates are allowed to reproduce and mutate to produce new
generation. The candidates are molded and altered by fitness function so
character will be slightly different fiom the original

The new candidates are evaluated to fit in the original pool

The evaluation checks if the new generation is fit to be in the original population

A maximum set number of candidates has been reached and money)

Create a population of creatures in the universe

Kill all relatively untit or weak creatures. Tn real lite those who are weak
naturally die faster

Tn case of non-overpopulation

Two or more life forms are allowed or stimulated new generations
to mate

The genetics (DNAs) are combined to produce a new creature causing
a few random mutations on the new creature

Evaluate the new creature and place it in the (constrains of budgets time
population. Nature allows the new generation that can fit in the existing
world to survive

Reproduction and process contimies until a life fornm reaches a set time
(age), character (affect from illness) or overpopulation

A0

xH(x*2)
Fig. 1: Program trees (Mitchell, 1998)

A standard representation of the solution in a domain
is typically an array of bits. The bits can be easily aligned
due to their fixed size that enhances crossover operations
(Mohammed, 201 5a, b). Vanation of shape and sizes are
used for different programming. For example, graph
form representation is used in evolutionary programming
and tree-shaped representation 1s used in genetic
programming. Nevertheless, for the purpose of crossover
implementation, it is much simpler to use fixed-size
representation. The purpose of a fitness function is to
define the character representation and to measure the
quality of the character representation. The fitness of the
solution ensures that the sum of all characters in the
domain is valid. Normally bit value of 0 is valid and 1 is
not. In some cases when it is impossible to define the
fitness expression, interactive genetic algorithms are used.
Once the domain has the genetic representation and the
fitness function defined, the algorithm initializes the pool
of characters randomly (optunization process), then
improves the candidate solution characters through
repetitive application of mutation, crossover, inversion
and selection operators (Mitchell, 1998).

In the selection process, strong possible solution
characters are kept and stimulated. The selected
breed then produces newer generation that has greater
solution characters that are often referred to as more fit
(matching the fitness function). The selection process
either rates each selection and lists the best solutions or
rates random samples of the population. A stochastic
function assures that only small portions of less fit
characters are selected for mutation. The function helps

keep the diversity of the population big, increases the
mutation of strong solution characters and prevents
premature convergence that produces poor solutions
(Ting, 2005). Roulette wheel selection and tournament
selection are popular selection methods. Reproduction
generates further generations of populations that are
much stronger and fitter (Fig. 2).

The process 1s done through genetic operators,
crossover recombination and mutation. A pair of solution
character is selected for reproduction from the domain
pool. The new character carries the character of the
selected pair (Wang et of., 2008) and is then evaluated for
its degree of fit. The use of more than one parent is better
to repreduce a larger pool of solution characters, better
quality characters and at a shorter time. Regrouping,
colonized-extinction and migration are also used in GA
depending on the problem. The reproduction process
continues until conditions for termination are achieved.
Termination conditions include:

¢ The maximum mumber of possible solutions character
has been achieved (this does not offer solution
satisfaction)

¢+  The maximum number of set generations has been
reached

* A solution 1s ascertained that satisfies the set
minimum criteria. Time and money allocation for the
process are reached. The highest possible fitness is
obtamed and further longer
produces better results

reproduction  no

Chromosome encoding: The imitial process of
chromosomes encoding is choosing the data types. This
is the first major schema variations between John Holland
and others (Kraft et al., 1997). Holland imitially encoded
chromosomes in strings of binary digits. There are
numerous ways to represents genes creatures, since
Holland’s work surfaced (Obaid et af., 2015, Fogel, 2006).
These ways have their own advantages. To associate
the problems with the gene forms, the material of
the solution must be epitormized as a set of units of
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Flow chart of GA
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Fig. 2: Summary of the GA process (Wang ef al., 2008)

mformation (Obaid ef af., 2015). This way of association
proves accurate. So, when planning for daily activities,
the amount of time and the level of priority can be stored
mn a numerical value in a table.

The relationships between the values can be seen as
string of genes. The value in the first row may represents
the amount of time spend on meeting a client, the value in
the second row may represent the amount of time driving
to the amport and etc. Each of the amount of time spent
can be converted from base 10-2 to create a fixed width
binary number. Therefore, the problem of maximizing the
time spent in a day and maximizing activity is construed as
a genetic exemplification. A compilation of possible times
spent can be encoded, giving a population of time spent
creatures. In several cases, the targeted problems might
be more handily construed by data types except binary
(Osyczka and Kundu, 1995). For example, the times spent
in a day of a person appears more identical to the
list of real numbers with two decimal places (example: 1.43,
4.30 h) than a list of binary numbers.

The chicken and egg problem: Genotype is an encoded
list of genes and phenotype. A phenotype might be

encoded to introduce genotype or a genotype might be
decoded to intreduce a phenotype based on how the idea
is put into sentence (Gen and Cheng, 2000). Both
sentences refer to the same action. Most of the genes may
be affected by external factors such as growth and
nutrition (Obaid ez ai., 201 5).

Population size: The first thing to do to create a genetic
algorithm is to read and encode the entire population of
chromosomes. The population’s size must be decided and
fitness factors must be determined depending on the
availability and advancement of computing techmques. If
the size of the population is small, the solution may
not be satisfied (Gen and Cheng, 2000) because of
inadequate exploration (the chromosomes are not allowed
to reproduce enough to produce optimal solutions).
Nevertheless, smaller population size may generate faster
convergence (Obaid ef al., 2015). On the other hand, if the
size of population is too large, then time is wasted in
dealing with more data/chromosomes than 1s required
and convergence time is longer (Obaid et al., 2015;
Park and Kim, 2017). Thus, the nght population size
depends on the objective of the solutions and the
problem at hand The algorithm determines the right
population size based on the experience of the
programimer.

Chromosome evaluation: In a pool of random
chromosomes, it is highly likely that the chromosomes are
extremely unfit for the solution (Obaid et af., 2015). In
order to distinguish the chromosomes that are much
fitter than the others, each chromosome must be
evaluated. The distinguishing process requires two
important information, one is the information about the
chromoeseme and second, the environment where the
target chromosome can survive. To know the enviromment
in which the chromosomes can swvive, the programmer
must know the problem’s description to be partially
encoded/decoded Thus, referring to the time spent in
daily activities, one can set rules. For example, rather than
spending so much time driving to the airport, it is better to
spend time on an express train where the person can
perform other activities, save money and safer. Note that
the set of rules can be determined based on experience
and the aims of the daily task. Set of rules can be applied
to each daily activities and the time to be spent on the
activities.

However, every rule might be given a relative
significance by weighting when there are more than one
rules mvolved (Halim, 2013). Weighting is based on the
importance of the activities, hence the objective solution
of the chromosomes. In structuring the method to
evaluate the chromosomes, the programmer can set the
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evaluation to either generate the least costly population
or least time consumed based on budget constraints or to
generate the fit population. For example, in the time spent
example for daily activities, the time most spent might be
exemplified with cost. Tn problems related to optimization,
cost is not money or time but in terms of efficiency or life
span (Obaid et al, 2015; Gen and Cheng, 2000). Tt is
simpler to say that driving to the awrport 13 wasteful and
prone to accident (not safe for life). In this case, safety 1s
seen as inversely proportional to cost and life so one
might prefer the other (Gen and Cheng, 2000). Tn referring
to optimization techniques, the range of possible
solutions is usually referred to as the solution domain and
the cost or fitness of each point in the solution domain is
referred to as the altitude 1 the landscape of the problem
at hand.

Consequently to look for the domain’s minimum cost
is also to look at the domain’s lowest point of the cost
landscape. Usually, in optimization problems, plenty of
time 18 needed to extensively search for the solution in the
domain for the mimmum cost (Mostafa et af., 2012). Such
techniques of optimization utilize two techmques to speed
up the search. These optimization techniques are referred
to as exploitation or exploration. Optimization level
increases when the gap between exploration and
exploitation 1s reduced. Optimization 15 to find a good
medium m a shorter time period between exploration and
exploitation.

Tnitializing population: There are two most methods
for initializing a population (Barros et al., 2012). A
population of creature (all of the genetic mformation
about all the creatures mn the colony) can be loaded from
secondary storage. The storage 1s like a globe that
contains characters and landscape. The data m the
storage 1s a starting pomnt for the directed evolution.
Usually the genetic algorithm starts with a random
population. The domain for the algorithm is made-up of
population of clromosomes or life form with the genetic
make-up that 13 delimited by aimless process (Obaid et al.,
2015).

Selection methods for extinction or for breeding: The
major aim of selection 13 to produce the most fitness
chromosomes mn the genes pool (Gen and Cheng, 2000)
and to avoid over production of weak genes known as
lethal. One of the most important considerations to
achieve optimized solutions to a problem is to select the
right breed for mutation. Once the population is full, each
that matches the fitness function 1s selected for breeding.
If the level of overall fitness 1s not yet achieved, a desired
part of the creatures in the population can be selected for
elimination of a species (Obaid et al., 2015). This refers to
an elitist natural selection operator (Arbaoui et al.,

2014). To increase solution optimization, early genetic
algorithm process uses replacement strategy by replacing
two parent’s genes with two offspring in each generation.
This process maintains the same number of population
and avoids overcrowding process which is referred to as
crowding strategy (Gen and Cheng, 2000). Now a days, a
better crowding strategy is invented that enables a single
offspring to replace any of its parents that it most
resembles. Nevertheless, this process of gene comparison
of an offspring with the parent is expensive and time
consuming. Thus, it is not advisable for a study that has
budget constraints.

As mentioned in the theory of genetic algorithm
section, townament selection is a technique used to
decide which chromosomes to delete or elimmate from
the population In this schema, two chromosomes are
compared against each other to find which one is fit
according to the fitness function. The one that fits the
most is allowed to reproduce and mutate and the one that
1s least fit 18 elimmated (Halim, 2013). Tlus 1s aligned with
the survival of the fittest concept m which the weaker 1s
demised.

In the towrnament process, each chromosome is
matched against each other to fight once with another
chromosome similar to a tournament concept. Other
method of selection include elitist, fitness-proportionate
selection, roulette-wheel selection, scaling selection, rank
selection, generalization selection, steady-state selection
and hierarchical selection (Ansari and Bakar, 2014). An
issue of selection pressure, questioning the number of
creatures that are wiped out from each tournament are
highlighted in (Gen and Cheng, 2000). Comparing to real
life/nature, plagues like flood, storms, tsunami or
famines, the number of life forms removed fram the
earth 1s large.

However, in genetic algorithm, the number of
creatures to be deleted depends on the programmer and
if there are constramts to the program. The programmer
can set the fitness function to be high and as a result
many characters are deleted due to their mability to fit
with the function in a set time. The method of selecting
chromosomes/creatures in genetic algorithm is different
depending on the problems at hand. John Holland’s
Original Model uses the method of the survival of
the fittest i which the healthiest and the strongest
chromosomes survive and continue to breed (Gen and
Cheng, 2000). Other selection methods pick at random
any two creatures for breeding. There are two types
of species; high fitness species and low fitness
species.

High fitness species usually evolved from population
of chromosomes that mate between two high fitness
members. Low fitness species usually referred to as
“lethal” are intra-mating of members of a species of a low
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Single point crossover

Parents Offspring
Fig. 3: Single-point crossover
Multi-point crossover
I | L1 T |
| | L[ T[] |
Parents Offspring

Fig. 4: Two or more-point crossover

I'wo parents have already been selected:

PARENTI
PARENT2

101101010101001001001001110011100110101011101101
010100111011010101110101001001101011001010010110

Choose a crossover point:

41001001110011100110101011101101
O1110101001001 10101 10010100101 10

PARENTI
PARENTZ

1011010101010010
0101001110110101

Perform crossover to produce a child
CHILD 1011010101010010  0111010100100110101 1001010010110

Which then becomes. a whole new chromosome

CHILD 10110101010100100111010100100110101 1001010010110

Fig. 5: Crossover with fully encoded genes (Kraft et al.,
1997; Obaid et al., 2015)

OO I——

00000000] =

Fig. 6: Mutation process

fitness group with a member of a high fitness group or
mating of two low fitness groups. The survival chance of
the lethal species is low. The species may swvive only in
the next few generations.

Crossover, mutation and inversion: After the parent’s
chromosomes have been selected, the algorithm can allow
the breeding process to start. A new chromosome 1s
selected by choosing each gene in the chromosome an
allele from either the father or mother. The operation of
matching and combining the genes might be achieved in
several ways. A single pomnt crossover 1s the simplest and
easiest method (Obaid et al, 2015; Kraft et al, 1997,
Gen and Cheng, 2000). This process is similar to the ones

proposed by Holland (1975) in which the genes are
encoded in binary strings. The process translates almost
any genes to be represented (Obaid et al, 2015). The
offspring might be yielded using one-pomt crossover
(Fig. 3). A single point crossover is haphazardly selected
to happen somewhere in the gene’s string. All genetic
characteristics before the crossover point in the process
reflect the parent (Kraft et al, 1997) and all genetic
characteristic after the crossover reflects others (Sale and
Sherer, 2015).

The difference between single-pomt and multi-pomnt
crossover (Fig. 4) 1s that in multi-point crossover, the
genetic characteristics are extracted from many points in
the character and thus producing offspring with multiple
characters. The multiple characters optimize the level of
fitness solution. Figure 5 illustrates a crossover with fully
encoded genes.

The mutation process takes place with a small
probability (Limkar et al., 2015). A probability test is
conducted for each bit in a bit string. If the result is
positive, one of these two methods can be performed. In
method 1, the bit is flipped (0 changes to 1 and vice versa)
and method 2 randomly generates the bit. Randomly
generated bit and bit that does not match from the original
1s flipped to see if the flipped bit matches the origmal.
This process 15 referred to as inversion. Figure 6
llustrates the mutation process in generating new
chromosomes.

Lamarckian operators: In order to optimize the execution
of a GA, there are several applications that implement
other mechanisms on the chromosomes. Local hill
climbing techniques or greedy algorithms can be
applied on chromosomes that have been breed. The
purpose of applying the techmique is to increase the
fitness prior This 1s
referred to as Lamarckian evolution by Gen and Cheng
(2000} as an analogy to Lamarck’s theory of adaptation
(Sherwood, 2015). The lesson learned from a
chromosomes life can be passed to its offspring’s
(Gen and Cheng, 2000). Tf the algorithm is able to provide
good lessons to the parents than the new generation of
chromosomes can be optimized to the fittest.

chromosome to evaluation.

Memetic algorithms: In GA, the integrity of information
15 a gene and the information 1s passed on from one
generation to the next. This mtegrity of information 1s
referred to as ‘meme’ in Mimetic Algorithm (MAs). The
unit of information (meme) 1s read and altered by the
chromosomes when it is received. This 1s similar to
the life experience and information received by different
individuals interpreted differently by the person and differ
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from generation to generation (Gen and Cheng, 2000). As
a result, this system reduces the solution space and
reduces the number of generations to reach optimized
solution (Arbaoui et al., 2014). Nevertheless, the system
may increase the solution time at each step m reaching the
optimal solution. By considering each character’s meme,
Lamarckian operators are able to compress the search
space mto smaller ones. This technique works well when
an operator works with budget constraints such as time
and money.

Repair strategies: In the process of optimizing, there is a
possibility of genes to be produced outside the search
space (Gen and Cheng, 2000). Examples of a system
breeding lecture timetables are given. Two separate
timetables that are constructed contain one class booking
for a subject. However, if these timetables are not identical
and merge properly, the combination (crossover) of these
timetables may produce multiple class bookings.
Consequently, there 1s an error in the timetable where
students from different classes are assigned to one class.
This is more serious in examination timetable scheduling.
The reason 1s that for examination, the admimistrators and
the students do not have ample time to correct the
problem. Repair strategy is a method to form the
chromosoeme 1n the search space to make sure that there
is only one booking for each class.

The repair strategy alters the chromosome gene to
automatically detect one booking for its class. Rejection
scheme rejects any chromosomes which is external to the
search space of the problem. A penalty strategy is
applied in the search of a much larger search space and
thus, penalizes the problem by increasing cost and time.
In the case of timetabling problem, the repair strategy is
much better than rejection strategy or penalty strategy
because it converges the chromosomes in the search
space faster and maintains the original search space
(Gen and Cheng, 2000). Determining the creature’s
fitness is the final stage of the evolution of the
chromosomes. The process is performed similarly to the
mutialization process (Obaid ef af., 2015; Sherwood, 2007).
Each complete cycle of iteration is referred to as a
generation.

The process can be terminated when the maximum
mumber of chromosomes or possible solutions has been
reached, a solution to the problems has been achieved,
budget constraints reached and maximum possible fitness
has been reached, manual interruption and combination of
these factors. The termination process occurs when the
algorithim has produced at least one sufficiently fit
chromosome or a fit population depending on the
optimization target. Moreover, termination occurs when
the algorithm has ran out of preset number of generations
(Park and Kim, 2017).

Optimizing genetic algorithm performance: In any
algorithmic process, altering the variables value improves
the quickness and validation of the evolutionary process
(Goldberg, 2013). These variables contain mutation’s rate,
selection method, number of crossovers schemes,
constraint weightings and more. In more complex
algorithms, the variables are increased thus, increasing
the possibilities of alterations to mcrease speed and
effectiveness. There is the most effective range value for
each variable in the algorithm.

By effectively combine and accurately interpolate
the ranges, optimization is improved. The combination
of values at different times increases the possibility
of finding an accurate optimization in a shorter time
that is similar to randomization (Grefenstette, 2013).
There are many other techniques of optimizing
algorithm performances including evolution strategy,

Neurcevolution, firefly algorithm, particle swarm
optimization and harmony search.
RESULTS AND DISCUSSION
The bi-anmual construction of a umversity

examination timetable is a common problem for all
educational institutions across the globe. Some
university examination timetables are manually done
with the help of some simple software like Microsoft
Excel by a few administrators who are often involved
in multitasking activities (scheduling final examination,
answering students, lectuwrer or staff questions,
maintaining examination papers submissions and etc).
The construction occasionally faces problems like the
administrator taking leave, renovations of examination
rooms and inadequate facilities, laboratories, studios or
equipment. Most examination schedules are taken from
the previous semester and modified to work for the new
semester. Many institutions are forced to introduce
quarterly intake and quarterly examination to cater for the
increasing demand of education. For the timetable, this
pose higher constraints and utilizing the previous
semester schedule 1s no longer efficient. In every semester
a new examination timetable must be constructed to cope
with the increasing number of students and classes. The
timetable must also be sensitive to the growing number of
subjects/specializations every year. Most of the time, the
university examination department is not aware of these
growth. The umversity does not provide additional staff,
training or infrastructure (fast computers, software
programmers, etc.) to cope with these constraints
(Mahiba and Durai, 2012).

Educational institutions and timetabling problem: An
examination tmetabling 13 a problem of assigmng
examinations to periods and rooms. The examination
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timetable is one of a university’s main timetables other
than the course timetable. The course timetable 1s
released before a semester starts and the examination
timetable 1s released before the semester ends. There 1s
also another timetable which is the mid-term examination
timetable. These timetables are related to each other
and yet they can be quite different. Sometimes, it is
acceptable for two examinations to be held simultaneously
i one examination hall but it i1s not possible for two
subjects to be taught in one classroom in the same time
period. Exammnation halls are often shared by many
faculties/departments whereas each department uses its
own classroom and generally located m its faculty
building (Feng et al., 2016; Lumkar et al., 2015).

Examination timetabling problem description: A
university’s final examination timetable is a table for

coordinating students, teachers, rooms, time slots
(periods), class subjects and other examination room
types (computer labs, halls, studio, etc.). Every

university timetable has its own special problems. Most
universities consult experts to find solutions to the
problems. The scenario 1s not as easy as it seems mostly
due to the university itself that lacks staff, rooms,
facilities, staff work restrictions and student’s
requiremnents (Ahmadi et al,, 2014). University examination
timetable involves more human judgment because of
the staff’s lesser teaching loads and is less constrained
than school timetabling. Tn some institutions where
the students are not given choices in thewr subjects
(no electives or co-curriculum subjects), the timetabling 1s
simpler. The task of constructing a university’s
examination timetable involves several issues including
avoiding students to take more than one examination per
day or staff to invigilate more than one examination at the
same time.

back-to-back
a subject that involves

Some  subjects  require room
reservation. For example,
theoretical examination followed by a practical one.
Staffing, additional staff scheduling, assigning special
rooms and lessened weekend or evening examination
periods are other challenges that the scheduler must
consider. The university’s examination timetable should
not put students,

administrative staff. For example, by having the students

stress on the teachers and
to travel a distance from their homes and not providing
ample time for the students to travel from one examination
hall to another. The umiversity exammation timetable
must function to ease the life of teachers, staff and

students.

Problem solution approaches: Over the vears, many
programs and applications have been invented to
solve umiversitie’s lecture and examination timetabling
problems. UmTime 13 an open source system
designed to construct course and examination timetables.
The system permits several universities to arrange labor
to construct and quickly change the tunetable to
serve the educational instituion needs and mimnimize
conflicts. The Stochastic Optimization Timetabling
Tool (SOTT) has been developed for a university’s
course timetabling (Rudova, 2015; Hassani and Habiba,
2013). A multi-objective instance of a umversity’s
examination timetabling problems is demonstrated in
(Chaturvedi, 2013). The instance satisfies universal hard
constraints
overlap.

The multi-objective approach requires minimization
of the timetable length as well as the number of
occurrences of students having to take the exammation
in consecutive periods or in the same day. The
multi-objective algorithm is able to produce feasible
solutions without prior information. The effectiveness of
thus algonithm 1s better in comparison with other available
optimization techniques (Chaturvedi, 2013). Drools Solver
algorithm to solve examination scheduling problems
considers constraints of physical resource and fulfilling
student’s satisfaction i1s used by Gervasi. The related
study also mvestigates the solution for a real world data
sets. The study consists of 934 examinations, 36 periods
and 48 rooms generated 105,000 possible solutions. The
study found that the application is capable of mamtaming
hard and soft constramts and provides staff and students
satisfaction. The algorithm produces a timetable that
avolds conflicts and does not add stress to staff and
students. The generated timetable avoids large
examinations near the end of the schedule, examination of
different durations in the same time period and two
examinations subsequently held in one examination hall
(Ozcan et al., 2012).

A case study on examination timetable problem
using GA’s is discussed by Gonsalves and Oishi (2015).
The study concludes that GA can be applied in
domaims where there 1s insufficient knowledge or the
size and complexity 1s too kugh or labor intensive.
Crossover swaps i3 a pre-defined bits amount, usually
1 in GAs. However, the study found that the swapping
can lead to convergence of the offspring instead of
calculating towards a near fit solution. In this case,
mutation is used where 1 bit is set either from 0-1 or
vice versa (Gonsalves and Oishi, 2015). The study
suggests further improvements of the parameters, the
crossover amount, crossover occurrences and mutation

like seating capacity and examinations
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percentage. Further, study also needs to look into
defining the optimal values and draw closer parallelism
with biological evolution and implement further
computational models similar to assigmng fitness levels
to string parts or introducing new set of input strings
during computation.

Traditional solutions and methods: Traditional GA
algorithms to solve timetable problems use one
crossover and one mutation operator to produce the
offspring (new generation). The chosen crossover and
mutation methods are critical to the success of the GA.
Different crossover and mutation methods work best for
inconsistent problems and for several stages of the
problems (Sastry ef al., 2014). Determinmng the crossover
and mutation operators 1s a difficult task and time
consuming. The process is done on one to one trial
basis.

A Dynamic Genetic Algorithm (DGA) is proposed
(Sastry ef al., 2014) which simultaneously uses more than
one crossover and mutation operators to generate new
generations. The crossover and mutation rate changes
with the evaluation results. The DGA increases the speed
of crossover and mutation and performs better than the
traditional algorithm with a single crossover and mutation
operator. Parallel Genetic Algorithm (PGA) is used in
(Kumar et al., 2012), a method that reduces processing
time. The result shows that substantial speed of GA 1s
increased with a small communication overhead. The
overhead amount is about 13% of the total computational
time when using ten processors. The study found
mnproved performance for large number of processors.
Increasing processor quantity increases the speed of
GA.

Ant colony approaches are used by Sabar ef al.
(2011) to optimize examination timetabling solutions. Ant
colony optimization algorithm is a special approach of
swarm intelligence. The algorithm is first used in Traveling
Salesperson Problem (TSP) and 1s referred to as Ant
System (AS). In an AS, an ant 1s constructed to visit all
nodes in the domain. An ant can be trained to learn from
the past to make its decision to choose the next node. The
ant applies either a constructive heuristic strategy or a
pheromone trail strategy.

The constructive strategy applies one priority rule
randomly on the nearest neighbor that the decision to
mutate depends on the distances between the nodes that
host the ant and the node to be mutated. The pheromone
trail strategy depends heavily on the ant itself in
finding the shortest path to a node that needs to be
mutated. The ant releases a chemical substance called
pheromone to find the shortest path and communicate

between two locals. The ant chooses the paths with
higher pheromone level. The study found that ant colony
approaches may
problems.

solve various jomnt optinization

Final examination timetabling: The GA approach to
examination tinetabling requires imtial defimtions of
constraints. The conditions are grouped into two
categories. The first category is internal and coordinates
the division of periods of time and organization of
resources. The second 1s external and limits the umverse

of scheduling.

Soft and hard constraints: A timetable must serve and
overcome several constraints. Constraints are used by
people who deal with timetabling problems without
exception. In GA there are two types of constraints; soft
and hard constraints. When constructing an exam ination
timetable, hard constraints, require that there are no
violations such as two classes cammot be at different
locations at the same time (Limkar et al., 2015). An
extensive list of hard constraints related to final
examination scheduling.

Extensive list of final examination hard constraints:

¢ Final examination class must not be multiple reserved

»  Each exammation for every subject should be booked
Just once

¢+ The examination for every subject must not be
reserved together

»  The examination room must to be enormous to hold
the subjects booked for 1t

s Staff or teacher to invigilate should not be multiple

reserved
*  The invigilator (staff or lecturer) must be available
during the exammation and not be booked

somewhere else

+ Some examinations require special rooms like
laboratories, studios, computer labs, ete.

» A few examinations require unique rooms like
research centers, studios, PC labs, etc.

need to be held

. Some examination

consecutively

rooms

Soft constraints are limitations that can be abused,
however infringement must be minimized. For instance, a
last examination must be held nearest to the branch where
classes are held. There are numerous soft constramnts
proposed by various scientists. The soft constraints
request of significance is additionally extraordinary. A
commonplace list of soft constraints for defuute
examination timetabling 1s appeared.
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A list of final exam soft constraints:

* The distance between the student’s home to the
examination room must be minimized

¢ The examination rooms should be centrally located
Staftf and lecturers do not wish to invigilate
examinations continuously (one examination after the

other)

+  Most students do not wish their final examinations
be held back to back

» All final examinations must be held in one week
(examination period)

¢  Students, staff and lecturers do not wish final
examinations to be held on weekends on holidays

In constructing an automated final examination
timetabling system, beside the list of hard and soft
constraints that must be considered, there 1s alsc some
exceptions as listed.

List of exceptions in constructing final exam timetable:

¢+  The final examinations are held at each campus
simultaneously

*  An examination schedule 1s not needed for some
subjects (e.g., co-curriculum subjects, long distance
learning, etc.)

*  There are many staff and lecturers to invigilate

¢ There are many examination rooms to play with

¢+  Examination rooms should be larger to hold the
whole class

Constraint satisfaction: Constraint fulfillment in AT field
1s the conceivable qualities an arrangement of factors can
take. Informally, a finite space is a finite group of random
components. A constraint fulfillment issue on space
containg a group of factors whose qualities must be
taken from the area and a group of preconditions,
involving any constraint of the permitted values for a
gathering of factors. An answer for this issue 15 an
assessment of the considerable number of factors
limitations.

In testing, liumitations are expressed in consolidated
shape, instead of identifying every one of the estimations
of the factors that would fulfill the limitation. A standout
amongst the most well-known limitations 1s the finding
that the estimations of the factors influenced are all
extraordinary. TIssues that can be communicated as
imnperative fulfillment 1ssues for mstance are the eight
rulers confuse, the Sudoku taking care of issue the
Boolean satisfiability issue, booking issues and different
1ssues on diagrams, for example, chart shading issue.

GA application in examination timetabling: Automated
timetabling mcorporates class and examination timetabling
and has been the primary advancement issues for GA

applications. The idea utilizes mixture approaches in
which a developmental method plays out a search in the
area to change. The underlying timetable is bolstered by
particular mutation step to produce a final timetable.
The technique often produces a tumetable that fulfills all
hard constraints. Tn general, GA produces examination
timetables that meet hard and soft constraints and the
regulation set. When there 1s no penalty in an algorithm
with zero solution it shows that the solution does not
exist.

Nature of representation 1s showed by Pillay (2014)
utilizing Unil.ang. The info language method gives a
reagsonable and straightforward regular information
representation. The method likewise contemplates
imperatives and gives quality measures and answers for
various and related examination timetabling issues. The
utilization of non-specific calculations to take care of
timetabling issues is examined by Ahandani et al. (2012)
and proposed a system that gives more noteworthy
adaptability on the presentation of determined limitations
and assessment capacity of the arrangements. The review
additionally gives tips on the utilization of GA for
determination. A bland dialect that joins timetabling
issues and its limitations is additionally proposed
(Grobner and Wilke, 2002). In the review, the scientist
infers that the bland dialect can be utilized to sum up all
timetabling issues. The review endeavors to tackle
class-teacher timetabling issues for little schools.

A more efficient search algorithm 1s used by
Kajisha and Saito (2000) for one-dimensional Cellular
Automata (CAs) with self-replicating structure. In their
algorithms, the CA structure 18 represented by simple
fitness function and a genetic algorithm is used
effectively in which a gene is used as a rule table. The
review found that ideal mutations rate for fitness
development are available and some normal examples can
be drawn by the genes if the genes are to advance
effectively. There are numerous more analysts who utilize
diverse algorithmic methodologies and give approaches
to advancing arrangements connected for the entire
procedure or for part of the procedure.

Reasons for using GA in timetabling: Genetic Algorithm
15 one of the optimization algorithms that are based on
evolution of life (Seto and Kanasugi, 2012). GA is
able to solve various problems such as optimization
problems and machme learning. GA 1s used to solve
examination schedule for a university by Abbaszadeh and
Saeedvand (2014). The study introduces the term
NP-complete which means that no method 1s known that
guarantees optimal solution in a period of time. GA has to
comply with the hard and soft constraints of examination
scheduling. The rooms, staff and students are regarded
as characters that have to be arranged to fit specified
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A new population is thus generated
The process will be repeated until a
good solution is found

Fig. 7. The parallel connection between ga process and
the process of creating an examination timetable

fitness function. The researchers used a hybrid approach
for solving problem of a mimetic algorithm. The study
used evolutionary algorithm with rank-based fitness
proportionate selection combined with a local lull-climber
to optimize solutions found by EA. The study produced
a result of 40% reduction penalty.

Genetic algorithm 1s applied to generate schedules for
job shops by Mohammed et al. (2014). The algorithm has
to consider many NP-constraints such as cost, tardiness
and etc. The study concludes that GA produce efficient
schedules and can be applied to real-world situations.
Figure 7 shows the parallel comnection between GA
process and the process of creating an examination
timetable.

The process starts with generating a random
population of feasible timetables using a variation on a
graph coloring algorithm. The timetables are then
evaluated according to a set of criteria, e.g., the length of
the timetables, how many days is in the examination week,
the number of students who sit in two examinations in a
row or how many unused seats there are. The timetables
are randomly selected to be the foundation for the next
generation. The good timetables are automatically chosen
than the bad ones. The Mutation operator randomly
changes the period and room in which the examination 1s

to be held while maintaining a feasible timetable. The
crossover operator takes pairs of timetables, selects the
early examinations from one and the late examinations
from the other to produce a new tmetable. Any
examinations that cannot be placed this way are put in the
earliest available period.

Other techniques: This study deals mainly with solutions
to university examination timetabling problem. In this
study, the most used techniques to solve the exammation
timetabling problem are discussed.

Evolutionary algorithms: Evolutionary Algorithms (EA)
are comsidered as a good general purpose optimization
tool due to their high flexibility accompanied by
conceptual simplicity. Moreover, they have proven to be
a very effective tool for solving timetabling problems.
An EA framework 1s chosen as the basis to build
universal timetable problem solver. Term “EA” is used in
this study in its most general sense, it represemts a
population-based metaheuristic optimization algorithm
that uses mechamsms mspired by biological evolution
such as reproduction and mutation.

Tabu search: A hyper-heuristic works on a higher
level of abstraction than a meta-heuristic and requires
no domain knowledge (Mushtaq et al., 2015). A
hyper-heuristic has access only to non-domain specific
information it receives from the heuristics that it works on.
Imtially, the hyper-heuristics must know the number, n of
heuristics used by the low-level heuristics module. Tt
searches for a good quality solutions guided by its own
strategy for making and evaluating the performance of
each heuristic known by their generic names H,, H,, H,.
The hyper-heuristic does not need to change the name,
purpose or implementation details of each low-level
heuristics (Hassani and Habibi, 2013). Tt just has to call a
specific heuristic, h and the heuristic solution 1s to modify
and return the result via an evaluation function. The
following algorithm shows a general framework of
hyper-heuristic.

Algorithm:
Algorithm: hyper-heuristic
Begin
Built an initial solution
Do
Select not Tabu heuristics
Apply the chosen heuristics
Update solution
Until terminating condition
End

The first solution is produced using a constructive
heuristic (highest grade or degree of saturatiom)
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(Mohammed, 2015). Subsequently, a randomized
(random exammations to move to a valid slot) 18 performed
for different runs starting with different seolutions. In
Step 2, we explore the area to find a better solution or local
optima (and possibly global optima). The framework is
similar to a local search, except that in Step 2, we explore
the area by selecting the heuristic to make the current

solution works (Abbaszadeh and Saeedvand, 2014).

Simulated annealing: Simulated Annealing (SA) 13 a
generic probabilistic metaheuristic for global optimization
problem of finding a good adaptation to the global
optimum of a given function in a large search space. Tt is
often used when the search space is discrete (e.g., all
tours that visit a given set of cities). For certain problems,
simulated armnealing are more effective than exhaustive
provided the goal was only good to an acceptable
solution in a fixed amount of time, rather than the best
possible solution (Mushtaq et al., 2016).

The name and nspiration come from amnealing in
metallurgy, a technique involving heating and controlled
cooling of the material to the size of the crystals increase
and reduce their defects. The heat causes the atoms to
unstuck from their initial position (a local minimum of the
internal energy) become random wander through states of
higher energy the slow cooling gives them more chances
of finding configurations with lower internal energy than
the original.

Graph coloring: In the area of graph theory, graph
coloring is a special case of graph labeling and is an
assignment of labels traditionally called “colors™ to
elements of a graph subject to certain limitations. In its
simplest form, it 13 a way of coloring the vertices of a
graph such that no two adjacent vertices have the same
color which 1s called a vertex color. A border color has a
color to each edge so that no two adjacent edges share
the same color and a face coloring of a planar graph
indicates a color to each face or region so that no two
faces that share a border have the same color. Vertex
coloring is the starting point of the subject and other
coloring problems can be converted into a vertex
version.

Graph coloring enjoys many practical applications and
theoretical challenges. Besides the traditional types of
problems, different restrictions may be 1mposed on the
graph or the way a color is assigned or even the color
itself. Tt has even reached popularity with the general
public in the form of the popular Sudoku. Graph coloring
1s still a very active area of research (Mohammed, 2015).
Vertex color models a number of planning problems. In the
cleanest form, a certain set of jobs should be assigned to
time slots where each job requires such a slot. Tobs can be
scheduled in any order but pairs of jobs can conflict in the

sense that they cannot be assigned to the same time slot,
perhaps because they both rely on a shared resource
(Bello et ai., 2008).

CONCLUSION

Examination scheduling is one of the most important
real life tasks and many umversities are facing problems
with constraints 1 producing a perfect timetable.
Examination scheduling is known to be NP-hard and the
parallelism between GA and generating timetable process
make GA a popular method in solving timetable
problems. Methodologies like General Algorithms (GAs),
Evolutionary Algorithms (EAs), etc. have been applied to
achieve optimum solutions with mixed success. There are
many techniques m solving exammation tmetable
problems, some looks at the general or overall algorithm
and some looks at part of the processes. However, all of
the studies aim at improving the quality and effectiveness
of the GAs. Genetic algorithm effectively demonstrates
the ability to solve complex optimization problems. The
future of GA is promising in solving examiation
timetabling problems at university level. If a university is
willing to fully support the initiative in applying GA in
solving their scheduling problems the prospect of
applying GA will be huge.
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