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Abstract: This study has focused on the development of the mathematical model of the nonlinear differential
equations with both Brownian motion and thermal radiation being present. The similarity variables were used
to transform the nonlinear governing boundary layer equations into ordinary differential equations. The
solutions to this problem were derived by using the Optimal Homotopy Asymptotic Method (OHAM) in which
the Runge-Kutta fourth order method with shooting technique was also used to validate the accuracy of our
results. In relation to the pertinent parameters on the velocity, temperature and concentration profiles such as
Browmnian, thermophoresis, magnetic, shape, heat source and thermal radiation parameters have all been studied
and details are given in both tables and graphs, respectively. The results obtained are fascinatingly agreed with
the numerical solutions along with the previously published study.
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INTRODUCTION

The boundary layer flow over a dynamic stretching
sheet is an often engaged case in many engineering
processes. The heat treatments are also used i the
manufacture of many other materials such as glass-fibre,
paper production and cooling of metallic sheets or
electronic chips amongst others. Tt also involves the use
of heating or chilling, normally it requires an intense
temperatire to achieve the deswed result such as
hardening or softening of a material. Where the heat
treatment techmques consist of amnealing, case
hardening, precipitation strengthening, quenching and
tempering.

The study of boundary layer flow over a moving
surface happens to be an amazing research area by
many scholars (Elbashbeshy and Aldawody, 2000,
Elbashbeshy and Bazid, 2003, 2000, 2004a, b) mvestigated
the effect of internal heat generation on unsteady flow
and thermal boundary layer thickness (Fang, 2008)
studied the impact of uniform-shear flow on the boundary
layers over a stretching surface. Many researchers have
shown their profound interest m the boundary layer
flow problem along the stretching sheet (Ali, 1995
Nazar et al., 2004, Ishak et al, 2009, Chiam, 1995,
Vajravelu, 2001, Prasad et al., 2009, Cortell, 2008). The

term nanofluid which was first coined by Choi (1995) n
his bid to propose the new group of enhancing heat
transfer fluid by dispersing nano-sized particles in a base
fluid. Now a days, the use of nanofluid in the research
field has grabbed the attention of many scholars out there
for its ability to enhance heat transfer and many mdustral
applications. Amongst the collection of articles gathered
for this study are (Hamad, 2011; Oztop and Abu Nada,
2008; Rana and Bhargava, 2012; Alsaedi et al., 2012;
Khan and Pop, 2010; Fang et al., 2012; Chen and Char,
1988; Magyari and Keller, 2000, Nadeem et al., 2010).
Recently, Abdel-wahed ef al. (2015) analytically analyzed
the influence of Browmen motion during the flow and heat
transfer process in the nanofluid. Furthermore, more
useful studies concerning the study of flow and heat
transfer of nanofluid over a stretching sheet surface are
recently available as duly reported by Zhang ef af. (2016),
Pourmehran et al. (2016), Eid (2016), Khan ef al. (2015)
Hayat et al. (2017) and Su1 et al. (2016).

Radiation is a method of heat transfer that does not
rely upon any contact between the heat source and
the heated object as is the case with conduction and
convection. Heat can be transmitted through empty space
by thermal radiation often called nfrared radiation.
Moreover, Kandasamy et al. (2013) studied the thermal
stratification due to solar energy radiation effects of the
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unsteady Hiemenz flow of Cu-nanofluid over a porous
wedge. Many studies in relation the thermal radiation
effects can be found by Mustafa et al. (2015), Ashraf and
Rasluid (2012), Kothandapami and Prakash (2015),
El-Arabawy (2003).

MATERIALS AND METHODS

In this study, we employed both analytical and
numerical techmques, 1.e. (OHAM) and Runge-Kutta
fourth order along with shooting technique to derive the
solution of hydromagnetic and radiative flow and heat
transfer feature of a nanofluid over a dynamic stretching
sheet with nonlinear velocity along the surface with
Brownian motion, thermal radiation and other related
parameters in the course of the heat treatment process.

Problem description: We consider the steady, laminar,
two-dimensional  boundary layer flow of an
mcompressible viscous nanofluuid over a dynamic
stretching sheet with a transverse magnetic field, heat
generation and radiative heat flux. The surface 1s
presumed to be far from being flat with certain features
depending on the value of the shape parameter n which 1s
defined as y = & (x+b)1-n/2. The x-axis nmns along the
middle of the surface in the direction of its motion and the
y-axis is perpendicular to it as shown in Fig. 1.
Furthermore, 1t 1s assumed that both the fluid phase and
nanoparticles are in thermal stability condition and no slip
oceurs between them.

We, therefore as sume the coefficient & to be little in
order to get the surface significantly narrows and the
pressure gradients along the swrface would be avoided
while the induced magnetic field produced by the motion
of an electrically conducting fluid 15 negligible. It is
presumed that at the surface which 13 dynamic, the
temperature T and the concentration of the nano-sized
particle C bear constant values T, and C,, respectively.
While the surrounding values secured as y leans towards
mfimity of T and C are represented by T. and C
appropriately. Let T, is the velocity of the dynamic
surface.

Based on the usual boundary layer assumptions, the
equations controls the two-dimensional incompressible
hydro-magnetic nanofluid flow and heat transfer over a
stretching sheet in the presence of thermal radiation can
be written as:

du av:

—+—==0 (1)
dx dy
2 2
gu B 9w oB(x) @)
x oy oy p

Slot |:

Nanofluid

>
|: fo Q, (x+b)" U, =a(x+b)
B = B, (x+b)™"

tre

Fig. 1: Coordinate system and flow model

aT AT @'T acor D farY
U4V — =0 +T| Dy ——+—| — | |+
ox dy Oy dy dy T.| dy 3)

Q(X)(T ) 1 dq,
pC; TopC, oy
2 2
ua—cwa—cz BB €, Dr o'T 4
Jx oy ay’ Tl oy’

Subject to boundary conditions:

1-n
u=U_,v=0,T=T,C=C,,aty =8(x+b) 2, (5)
u=0,v=0,T=T_ ,C=C_as y >
Where:
vandv = Velocity components m x and y directions,
respectively
P = The density of the base flud
C, = The heat capacity of a fluid at constant
pressure
u = The kinematic viscosity
o = The thermal diffusion
0 = The electrical conductivity with Dy and D;
being the Brownian diffusion and
thermophoretic diffusion coefficients
T = The ratio between the effective heat capacity
of the nanoparticle and heat capacity of the
fluid
q, = The radiative heat flux

While the certain form of the magnetic field B(x) =B,
(xth) n-1/2 and heat generation Q(x) = Qu(x+bn-1 are
selected mn order to get a similarity solution. While the
expression of B (x) has been deliberated by Prasad et al.
(2010). Introducing:
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(T-T.)
(T,-T.)

e

U, (x) = a(x+b) ,6(n) = (C,-C.)

M) =

where, a and b are constants and n is the shape parameter.
In this study, n+1>0 is presumed to authenticate the
sinilarity variable end functions. The radiative heat flux in
Eq. 3 1s discussed by Rosseland (1931) as:

* oo
q = -Jo (7
3k ay

where, o* and k* are the Stefan-Boltzmann constant and
the mean absorption number, going by the study by
Akbar ef al. (2013), we presume that the temperature
variation amidst the flow is significantly limited and the
expression T* may be considered as a linear function of
temperature. Therefore, T* is expanded using Taylor series
expansion about T, and ignoring the higher-order terms
hence:

T* =4T'T -3T! (8)
Using Eq. 7 and 8 mnto Eq. 3 we have:
2
o o]
Y gy Y (9)
k]
Q(x)(T_Tm)+16G T 8712“
pC, 3pek dy

aT T 9°T
UV = 0 ——+T
Jx ay dy*

We consider the similarity solution of Eq. 2-4 subject
to Eq. 5 in the following form:

T

(10)
Where:
M = The similarity variable
1] = The stream function which is defined as u 3,/2,

d,/0, = That obviously satisfies Eq. 1

Putting Eq. 10 into Eq. 2-4 then the similarity
equations are obtained as follows:

P”+ff"(2n jf‘z(2 ]Mf_o (11)
n+l n+1

(3+4PrN)8"+3P{f8'+( 2 ljxembemvmteﬂ—
n+
(12)
1 Nt
"+~ Lefg+ 6" =0 (13)
oreglete {ij

with boundary conditions:

f(a)a{lmﬂ P{o) =1, 0(0) =1, 9(0) =1 and
Ploo) =
(=) ”

0, 8(=) =0,
where primes denote differentiation with respect to (1))
where ¢ = dntw/2u is the surface thickness parameter
and at 1 = « pinpoints the plate surface. We defined
F (&) = f (n-w) = f (7). Now the similarity Eq. 11-13 with
their boundary Eq. 14 can be written as:

F"+FF" — Zn FIZ _ 2 MF'=0 (15)
n+l n+l

(3+4Pr N)@”+3P{Fe'+( Jkembe (p'+Nt8'2} =

n+l
(16)
1 Nt

" LeFo' en =0 (17)

ity

with boundary conditions:
1-n

F(0) OL[E} F(0)=1,8(0) =1, ¢(0) =1and (18)

F() =0.8(=) =0, @() =

where the prime (') denotes differentiation with respect to
(&) while the pertinent parameters are defined by:

2
Pr=CLe= 2 M= 2 % \poPee o),
o DB ap apc, v
p T
Nt—TDT( = m), :( p)p 40 T,
uT. (pC, ). upCk

Here Pr, Le, M, A, Nb, Nt, T and N represent the
Prandtl number, the Lewis number, the magnetic field
parameter, the heat source parameter, the Browman
motion parameter, the thermophoresis parameter, the ratio
between the effective heat capacity of the nanoparticle
material and heat capacity of the fluid and the thermal
radiation parameter, respectively. In this study, the
quantities of practical interest are the Nusselt number Nu,

the skin friction coefficient Cy, and the Sherwood number
Sh which are defined as:

_ (x+b)q,

n+l
Nu = ,/ 8’
k(T T): e

\/{“T]F (0
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Sh;%:}Sh:— Reniﬂ(p‘(o) (19)
D.(C, -C.) 2

w

where, T, ¢, and g, are the surface shear stress, surface
heat flux and surface mass flux, respectively.

Analytical derivation using (OHAM): Here OHAM is
being used to approximate the solution of the transformed
ordmary differential Eq. 15-17 alongside Eq. 18 with
respect to the suppositions:

F= FD+pF1+p2F2, H (p)= pC1+p2C2
0= 8u+Pe1+P292, HZ(P) = pc3+pzc4
® = @y+p9,Tp’@,, H,(p) = pC,+p°C,

where, pe[0, 1]is called an embedding parameter, H; (p),
1=1, 2 18 a nonzero auxiliary functionand C;1=1,2, ..., 6
are constants (Marinca and Herisamu, 2008; Madaki et al.,
2016).

Approximation of the momentum boundary layer
equation: To apply OHAM on Eq. 15 with respect to 18,
we consider the subsequent assumption as:

L =F'+F and N = F"+FF" — 2_n F— i MF —-F'—F
n+1 n+l

Where:
I. = The linear operator
N = The non-linear operator

Applying OHAM to the Eq. 15 with respect to Eq. 18
we have:

(1-p)[F'+F]= H,(p)[F”'+FF” —(HQEJF'Z —[ZJMF}

n+l
(20)
Using the boundary Eq. 18, after some simplification
and equating the like powers of p-terms, we get; the
zeroth-order equation p”:

. . 1-n .
- - - (21)
F, +F =0,F(0) a[HH}FU(o) 1

The first-order equation p":

P ; 2n . 2
FE+F=F+E+C, {FD +FF, [—n+ JFDZ M—HHJMH

F, E(0)=0.E(0) =0

The second-order equation p*

F +FF + FF —{—“ jFDE -
n+1

E+FE=F+FE+C, ) +
n+l
. Zn 3 . 2 :
C,|F+KF,-| — F"—=|| —— M |E, |,
2|:D oo [n+1}ﬂ [{n+1} JD:|
E(0)=0E{0)=0
(23)

Solving Eq. 21-23 with their corresponding boundary
conditions, we obtained the approximation of F,(E), F (&)
and F,(£) as follows:

(é) B _e’ﬁ(lfeé+nfneé — o e + ane®) (24)
1+n

1-n-e”{4M+n+20 - 2no 1)+
265 (2M{E+1) ~(n-1)(at+a-1)) | ()
2(1+n)

1
6{1+n)’
(6" (n —1)—3n’ +8n —5(2 - 4M —3atn(2+30)) -
2¢*(12M° —12M(n—-1){a—1)+ (n 1) (3’ +90+
E (&) = {30 =11(c =30 —1)))+3e’(8M’ (£+1) ~8M({n —1)
(of+o—2)+(n— 120’ (E+])+1200 - 13+

n(2a’ (E41) =120 = 5)MC, +3e*(n+1)
(1-n-e*(—2no+20+n+4M - 1)+

2e°(ZM{E +1) - (n— Dol + a —1)))C,))

(e (—6e>(e> —1) (n2 —I)C1 +

(26)
In general, the solution of Eq. 15 can be determined
approximately in the form:

F(E)=F (E)+F (E)+F,(8) @n

The residual equation in this case becomes:
JCECCREECR

N
(28)

The unknown constants C; and C, can be optimally
identified from the conditions:

R, (iacpcz ) =

ar. ol s
i:i =0 where J,(C ) = Rf(gacl)dg (29)
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Approximation of the energy boundary layer
equation apply OHAM to the nonlinear Eq. 16 along the
boundary Eq. 18,
SUpposition:

we consider the subsequent

3pr

L=040andN =0"+ ——
(3+ 4prN)

[Fo'+ [L}A 0+ NbB'g+ Nto™” ][0+ 6]
n+l

Where:
L = The linear operator
N = The non-linear operator

Applying OHAM to the Eq. 16 with respect to Eq. 18,
we have:
3Pr

ell+
(3+4PrN)

(1-p)[6+8] =H.(p) {
n+l

F@'+(L]XB+NbB'cp’+Nt8’z}

(30)

Using the boundary Eq. 18 after some simplification

and equating the like powers of P-terms, we get: the
zeroth-order equation p”:

0,76, =0,0,(0)=1 (1)

The first-order equation p":

" 3Pr
ot
(3+4PrN)
0,40, =0,+0,+C, Fueﬁ[ 2 jmﬁ .6,(0)=0
n+l1
Nbo, @, +Nt6),
(32)
The second-crder equation p*:
o+ 3Pr
(3+4PrN)
8,+6, =8,+6,+C S
2 T TH T FnelJrEenJ{iﬂjkeﬁr
n
o L - (33)
Nbé, @, +Nb6, @, +2N16,6)]
‘ 2
E6,+ —
I U LN (nﬂ} 6,(0)=0
(3+4PrN)

18, *NbE, @, TN,

Solving Eq. 31-33 with their corresponding boundary
conditions, we obtained the approximation of 8,(£) and

0,(E) as follows:

0,(5)=¢* (34)
— 1 “Lraat
8,(&)= (10)(3+4PrN} C,e""(3e"(n+1)E+
Pr{-3(n+1){ Nb+Nt+1) + e*(3 + 3Nb+ (35)

ANt - 3E+4NE — 3k +n(3+3Nb+3Nt —
38 HANEFIOEHOEA)

Similarly, 6,(E) can be obtained from Eq. 33 now, the

solution of Eq. 16 can be determined approximately in the
form:

8(£)=6,(8)+8,(£)+6,(E) (36)
The residual equation m this case becomes:

3Pr
(3+4PrN)

F(a)e'(a){%}xe(awme'
()@ () o (E)

R,(E,C,.C,)=6"(E)+

(37)

The unknown constants C, and C, can be optimally
identified from the conditions:

o1, o3I,
ac,  ac,
Where:
LG =[ RIECHE (38)

Approximation of the concentration boundary layer
equation: Under the basis of the following assumptions,
we can apply the OHAM to the nonlinear ordinary
differential with the boundary (Eq. 18):

1 Nt
L=g'+pand N =¢@"+—LeFop'+ — |8"—|p'+
@+ @ 2 ¢ (ij [o'+q]

Where:
L = The linear operator
N = The non-linear operator

Applying OHAM on with respect to Eq. 18, we
have:

(1-p)[¢'+o] = Hl(p){cp"Jr%LchpU{%}e"} (39)

Using the boundary Eq. 18 after some sunplification
and equating the like powers of p-terms, we get: the
zeroth-order equation p”:
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@9, =0, ¢, (0) =1 (40)
The first-order equation p':
1 .
ch+ELan(pn+

G =0, tCy|
Nb

.@,(0)=0 41

The second-order equation p’:

. . | 1 ! Nt Y
@, = @ T HC; |:(P1 +5L6F0(p1 +5L6F1 @, +[ﬁ}el :|+
.1 . Nt .
Cs |:(pu +2L6Fu(pu+[N.bjeu }: P, (0) =0
(42)
The solution of the zeroth-order and first-order

Eq. 40 and 41 with their corresponding boundary
conditions can be written as:

(Pu(é):':‘rﬁ (43)

1

@ (2)= 2(1+n)Nb
e*nLeNb+2e"NbE — e*LeNbé+2e*nNbE — e nLeNbE +
2eNtE+2enNtE — e*LeNbaé +e nLeNbal)

C,e?%(~LeNb+e*LeNb — nLeNb+

(44)

Similarly, ¢,(£) canbe determined from Eq. 42. Now

in general, the solution of Eq. 49 is therefore to be
approximated using the expression:

®(E) =@, (E)+ 0, (8)+0,(8) (45)

The residual equation n this case becomes:

Nt

R,(5.C,.C, )= {(p”(é)Jr;LeF(é)(p'(é)Jr[m)je"(é)}
(46)

The unknown constants C; and C; can be optimally
identified from the conditions:

a1, oI =
i:ﬁzq where I,(C ) =T RI(£,C )dg  (47)

The results obtained for F" (0) in this study has
been validated with the solutions obtained by Fang et al.
(2012) (Table 1-5).

Table 1: Cormparison of present results for -F (0) at different values of n and
o

-F"'(0)

o n __ Previous study (Fang ef ad., 2012) Present study

0.25 Q.0 0.7843 0.783031
1.0 1.0000 1.000000
3.0 1.0905 1.091060
7.0 1.1323 1.132530

0.5 0.0 0.9576 0.956602
1.0 1.0000 1.000000
3.0 1.0359 1.036020
7.0 1.0550 1.055080

Table 2: The effects of Nt on -8’ (0) and -’ (0) along their associated Nu
and Sh number when «=n=M = 0.60, Le = 2.0, Pr = 6.20,
MNb=010and A=020and N=1.0

Nt -8' () @' (0) Nu Sh

0.1 0.034988 0.733114 -22.128 -463.662
0.4 0.110618 1.331927 -69.961 -842.385
0.6 0.176164 2.065176 -111.416 -1306.132

Table 3: The effects of A on -©' (0) and -¢' (0) along their associated, Nu
and 8h number when &« =n=M =N =030, Le = 2.0, Pr = 6.20,

Nt=Nb=0.10
A -8' (O ' (O) Nu Sh
0.3 1.309267 0.400148 -746.397 -228.119
0.1 1.063156 0.173734 -606.092 -99.044
0.0 0.912816 0.037136 -520.385 -21.171
0.1 0.728473 -0.128758 -415.293 73.403
0.3 0.139701 -0.890105 -79.642 507.438

Table4: The effects of M and n on -F' (0), ©' (0) and ¢’ (0) along their associated Cf,, Nu and Sh number when o =N = 0.50, Le = 2.0, Pr = 6.20,

Nt=Nb=0.10and A =0.20

M n -F" (0) -9'{0) ' (0) Cf, Nu Sh

0.1 0.5 1.050624 0.401282 0.443852 0.002573 -245.734 -271.803
0.5 1.0 1.224741 0.263455 0.419551 0.003464 -186.291 -296.667
1 1.5 1.340763 0.192773 0.399121 0.004240 -152.400 -315.533
1.5 0.5 1.754191 -0.004712 0.700332 0.004297 2.885 -428.864
3 1.0 2.000000 -0.156534 0.726977 0.005657 110.686 -514.050
10 1.5 2.972853 -0.409837 0.886594 0.009401 324.005 -700.914

Table 5: The effects of ¢ and n on -F" (0), ©' (0) and <’ (0) along their associated Cf,, Nu and Sh number when M = 1.0, N =0.50, Le = 2.0, Pr = 6.20,

Nt=Nb=0.10 and A =0.20

o n -F* () -2' ' (0) Ct, Nu 8h

0.2 -0.3 1.832473 -0.695121 1.686735 0.003066 290.790 -705.612
0.3 1.534981 0.144619 0.661414 0.003500 -82.44¢6 -377.064
0.5 1.489362 0.203473 0.583602 0.003648 -124.601 -357.382

0.5 -0.3 2.181240 0.725677 0.605824 0.003650 -303.572 -253.434
0.3 1.622922 0.329210 0.572688 0.003701 -187.679 -326.482
0.5 1.541786 0.305178 0.540032 0.003777 -186.883 -330.701
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RESULTS AND DISCUSSION

This study, concerned about the mathematical model
of a nanoflud flow and heat transfer over a stretching
sheet with nonlinear velocity along the flow field with
both Brownian motion and thermal radiation being
present. The influence of all the pertinent parameters
mvolved in the velocity, temperature and nanoparticles
volume fraction within the boundary layer has been
presented in Fig. 2-11. Whereas, the effects of some
related parameters in the temperature and volume fraction
gradients at the surface along with the values of Nu and
Sh at Re = 5x10° are duly exhibited in Table 2-5.

The accuracy between the present and previous
studies has been juxtaposed in Table 1 where a very
fascinate agreement between the two results have
attained. The impact of thermophoresis parameter Nt on
the temperature and nanoparticles
gradients with their associated values of Nusselt number
and Sherwood number has been unveiled i1 Table 2.
where the increase in the values of thermophoresis

concentration

parameter results to the increase in the heat and mass
transfer rates. Moreover, both Nu and Sh have effectively
mcereased as the values of Nt rises from (0.1-0.6)
simultaneously. An increase in the values of the heat
source parameter A, resulted to the decrease in the heat
and mass transfer rates, Nusselt number and Sherwood
number from the surface. But the Sherwood number has
begins to ascend as the value of 4 improves from (0.1-0.3)
as contained in Table 3. The effects of magnetic field
parameter M and shape parameter n on the velocity,
temperature and nanoparticles volume fraction gradients
at the surface along with proportionate values of Cf,, Nu
and Sh are presented in Table 4. It 1s clear that the
increase in the values of both M and n leads to the
mcrease 1 the surface shear stress while the
dimensionless mass transfer rate decreases as M
changes from (0.1-1) but as M and n move from (1.5-10)
and (0.5-1.5) then it started ascending. Besides, the
dimensionless heat transfer rate rapidly decreases with
increase in both M and n. Where the skin friction, the
Nusselt number and the Sherwood number have all
mncreased.

Table 5 has shown how the velocity power index
parameter (known as shape parameter) n influences the
values of the surface shear stress, dimensionless heat and
mass transfer rates with their respective skin friction,
Nusselt number and Sherwood number. As the value
of n increases both the surface shear stress and
dimensionless mass transfer rate decreased while due to
the thermal radiation along the surface, the dimensionless
heat transfer rate happens to be mcreasing. Moreover, the

1.0 7

A=Nb=Nt=0.1,Le=2,
Pr=62,N=a=M=0.6

0.8 1

1.0+

F(€)

Fig. 3: Effect of magnetic parameter M on F'

skin friction has notably increases while the Nusselt
number and Sherwood number were both decreasing due
to the increase in the value of ¢ as it moves from (0.2-0.5).

The shape parameter n has played a better role in
controlling the surface shape, the category of shape as
well as the nature of the boundary layer. Where it can be
noticed that the external form of the surface absolutely
depends on n values. As for n = 1, the study significantly
diminishes to a flat surface with stable thickness. Whilst
for n<1 this analysis remodelled mto a surface with
growing thickness and arched external shape. Albeit, for
n>1 this analysis changes into surface with reduced
thickness and recessed external shape. Moreover, for
controlling the type of shape by this parameter such that
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0()

Fig. 4: Effect of thickness parameter ¢ on 6

1.0,
Pr=62N=M=06,Le=2,
Nt=Nb=0.1,6=n=0.5
0.8-
0.6
<
D
0.4-
)= 0.2
02+ ——— %= 0.0
=02
0 T T T L 1
0 1 2 3 4 6

Fig. 5: Effect of heat source parameter A on 6

for n = 0, the shape diuninished to linear with umform
velocity but the shape slashed to retardation shape if n<1
and gives a hasten shape when n>1. Below are the
graphical analyses of our results.

Figure 2 we have seen the impact of shape parameter
on the velocity profiles and it 1s obvious that mcreasing
the values of n leads to the mcrease of the boundary layer
velocity. The effect of the magnetic parameter M on
velocity profiles has shown in Fig. 3 where the velocity
decreases with an increase of magnetic parameter M.
Figure 4 is depicted the influence of thickness parameter
¢ on temperature profiles as it 18 observed that the
velocity decreases with an imncrease in the values of the
thickness parameter. The effect of heat source parameter
A on temperature profiles as depicted in Fig. 5 shows

g Pr=62,N=0=05,
064 Nt0.ITe=22-03
M=n=06
0.4
0.2 =Nb=0.1
-—-Nb=0.4
------ Nb=0.6 -
0 : : . T —t
0 1 2 3 4 5 6

1.0
081

0.6 1

(31

0.4 1

Fig. 7: Effect of Brownian parameter Nb on ¢

that as the values of the heat source are ncreasing
the boundary layer temperature i1s also mcreasing.

Figure 6 and 7 presented the mfluence of Nb on
temperature and nanoparticles concentration profiles.
Such that the increase m the values of Nb leads to the
increase in the boundary layer temperature while the
nanoparticles volume fraction decreases significantly.
However, the temperature profiles have been affected by
the presence of thermal radiation which drives to the
increase in both the temperature and the thermal
boundary layer thickness when N<1 as depicted in
Fig. 8 which exlubits the fascinate agreement between the
two methods used. On the other hand, 1t has been noticed
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Fig. 8 Comparison between OHAM and numerical results

at various values of radiation parameter N on 6
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Fig. 9: Effect of radiation parameter N on 6

that the boundary layer temperature decreases when N>1
as presented in Fig. 9. The effect of the rmophoresis
parameter Nt on and nanoparticles
concentration profiles is depicted in Fig. 10 and 11. Where

temperature

it has been apparently observed that the temperature
enhances vehemently when the values of Nt get stronger
from (0.1-0.6). But the case was reversed on the
nanoparticles concentration profile as the increase in the
values of Nt results to increase in nanoparticles
concentration.

1.0

0.8 1

0.6

0

0.4

0 )
0 8
Fig. 10: Effect of thermophoresis parameter Nt on 6
3
. Pr=62,L=0=02,Nb=0.1,
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o
1
10

Fig. 11: Effect of thermophoresis parameter Nt on ¢
CONCLUSION

In this study, we have examimed the features of the
heat and mass transfer over a dynamic stretching sheet
with nonlinear velocity m a nanofluid with thermal
radiation and Brownian motion influence. The impacts of
all the related parameters on velocity, temperature and
concentration  profiles are  shown  graplucally.
Numerical results for the skin friction (surface shear
stress), Nusselt number (surface heat transfer rate)
and Sherwood number (surface mass transfer rate) are
depicted 1n tabular form. The results can be summarized

as follows.
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The increase in the values of n results to the increase
of the boundary layer velocity an increase m both Nb and
Nt increases the temperature in the boundary layer
province. While, the nanoparticle concentration increases
with increase in Nt. Whereas, the nanoparticle volume
fraction decreases significantly when the Nb increases the
presence of radiation has a direct impact on the
temperature profiles, where the temperature and the
thermal boundary layer thickness increases when N<1
and suddenly decreases when N=>1.
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