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Sliding Motion of the Yarn on the Package Surface During Yarn Unwinding
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Abstract: Tension in the yarn and its oscillations during the over-end unwinding of the yarn from stationary
packages depend on the unwinding speed, the shape and the winding type of the package, the air drag
coefficient and also the coefficient of friction between the yarn and the package. The vam does not leave the
surface package immediately at the unwinding point. Instead, it first slhides on the surface and then lifts off to
form the balloon. The problem of simulating the unwinding process can be split into two smaller sub-problems:
the first task was to describe the motion of the yarmn in the balloon, the second one to solve the sliding motion.
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INTRODUCTION

The problem of yam motion on the package surface
during the unwinding can be treated in analogy with the
motion of the yarmn forming the balloon between the lift-off
point and the eyelet, through which the yamn 1s being
pulled.

The yarn is being withdrawn with velocity V through
an eyelet where we also fix the origin O of our coordinate
system (Fig. 1). The varn 1s rotating aroun the z axis with
an angular velocity w. At the lift-off point Lp the varn lifts
from the package and forms a balloon. At the unwinding
point up the yarn starts to slide on the swrface of the
package. Angle ¢ is the winding angle of the yarn on the
package.

The general equation of motion for the vam was
derived and justified in one of the previous researches
(Pracek and Jaksic, 2002a, b; Pracek, 2004, 2005,
Pracek and Jaksic, 2005; Pracek, 2006, 2007, 2010a, b,
Pracek and Franci, 2010a, b, ¢; Pusnik and Pracek, 2016):
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Where:
r = The points from the origin of the coordinate

system to a chosen pomt along the yarn

p = The linear density of the yarn mass

w = The angular velocity vector of the spimmung
coordinate system in which the varn 1s being
described and which points along the z-axis

D = The operator of the total time derivative which

follows the motion of the point inside the
spinning coordinate system, D = 9/0t|,4_-V0/0s

The mechanical tension
The linear density of external forces

s
Il

In the part of the yarn which forms the balloon:

= Lopdy, v, @
2
Where:
¢, = The effective air-drag coefficient
d = The yam diameter
v, = = v-(vetjt 18 the normal component of the yarn

velocity (t 1s the unit tangent vector to the yam at
the given point). When however, the yarn is
sliding on the package surface the quantity

The related to the friction between the yarmn and
the package surface

Friction between the yarn and the package surface: There
1s a friction between the package and the yam which 1s
shiding on its surface before it lifts off to form the balloon.
The yarn 1s exerting a normal force on the package (1e., a
force perpendicular to the package surface, thus in radial
direction). This force 13 not known a priori but must be

Fig. 1: Mechanical setup in overend yarn unvinding from
cilimdrical package
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Fig 2: The force of friction between the package surface
and the yarn

determined as part of the solution to the full problem. The
simplest expression of the friction law states that the
friction force 1s proportional to the normal component of
the force. The coefficient of proportionality is known as
the coefficient of friction p. The friction force poimts in the
direction opposite to the yarn motion.

The quantity f in Eq. 1 therefore has two components:
the radial force of the package on the yam (which is equal
in magnitude to the force of the yamn on the package in
accordance with the Newton’s law of reciprocal action)
and the friction force proper (Fig. 2):

f=ne_-un v (3
v
Where:
n = The linear density of the normal component of the
force between the yarn and the surface
e, = The unit vector in the radial direction
v/[v| = The unit vector in the direction of the yarn

When the vyam shdes on the surface, it thus
experiences the normal force ne, and the friction force -un
v/|v]. The friction law 1s at best a rough approximation to
a more complex real behavior. In reality, the coefficient of
fricion depends mn a complicated way on the sliding
velocity (Pracel, 2004) and it is different at various points
of the package surface since the package 15 seldom fully
homogenous. We thus take p to be some average
coefticient of friction which one can determine empirically
(Pracek and Pusnik, 2016).

Quasi-stationary approximation: Equation 1 is generally
valid and it describes an arbitrary motion of the yamn, even
in cases when the conditions are rapidly changing for
example near the package edges. Near the package edge
the winding angle suddenly changes, therefore the motion
of the yarn on the package surface and m the part of the
balloon near the lift-off point becomes very complex. Near

the edges undesired events can occur; the yarn can fall
off the package or a layer of the yam collapses. The
description of such transient effects is beyond the
validity of our simplified model, since one should
accurately model the behavior of the yam also in the
layers forming the package bulk. For example, the residual
forces of the yarn in the package would also play a role
(Pracek, 2010a, b; Pracek ef al., 2011a, b, ¢).

Strictly speaking, the yarn undergoes sliding motion
on the package surface only when the unwinding point 1s
at a certain distance away from the packageedges. In
such circumstances, the conditions are quasi-stationary:
in the rotating coordinate frame the varn only slowly
changes its form. For this reason, in the first
approximation the time dependence can be fully
described by time-variable boundary conditions while the
time-derivative terms in the equation of motion can be
neglected (Pracek et al., 2016):

2
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The equation of motion for the yarn on the package,
simplification to a two-dimensional problem: When the
yarn slides on the package surface, its motion effectively
oceurs within a two-dimensional subspace. This fact can
be taken into account in Eq. 4 in order to simplify the
problem to a two-dimensional problem which can be
handled more easily. It turns out that m the case of sliding
motion on the cylindrical package the problem can be
solved to a large extent using analytical techniques.
Analytical solutions allow for a more direct understanding
of the relation between the different quantities. For this
reasonn we will henceforth assume that the package 1s
cylindrical and we will determine the analytical solution.
The radius vector to a point on the swface of a
cylinder can be expressed as (compare with Eq. 2 by

Pracek et al. (2016):

r(s)=ce (B(s)) + z(s)e, (5)

The quantity ¢ is the constant distance of the point
1 from the package axis. It 13 equal to the radius of the
layer which 18 being imwound. The umit vector e, pomts
along the direction of the package axis, the unit
vector e, points in the radial direction with the polar
angle 0(s), Fig. 3. There are two unknowns in this
expression, 0(s) and z(s) while the third [r(s)] drops out
since it is constant on the surface. The motion of the yarn
has this been translated to a two-dimensional problem.
This ansatz will be used in Eq. 4 to find a simplified
equation of motion.
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Fig. 3: The cylindrical coordinate system

The arc-length derivatives of the radius vector are

computed using the relations 9 and 10 from
Praeek et al (2016) to obtain:
r'(s)=cO(s)e, + z'(5)e, )

r"(s)=cO'(s)e, — 0[8’(3)]2 e +z"(s)e,

where, the dashes indicate the arc-length derivative.
We then obtain:

2
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T'(cB'e,+2z'e )+ T(c 8"ee—c(8')zer+z”ez) =
—T(0" e, +¢c(T'0+TO")e, +(T'z+ Tz")e,

We also need the relations:

mx p'=—cmb'(s)e,
And:
wx (X T)=—0rce,
which can be derived using a simple calculation of
the vector products. Equation 4 may then be decomposed

along its different components:

@)p(-ov (@Y +2Vewd'- afc)=—cT(®) +1, (7)
B)p(cV*0")=cTO"+cTO+ £, (8)

(z)p(sz") =Tz"+ Tz'+f, )

The quantities f,, f, and f, are the components of the
linear density of the external force (Eq. 3). The first one in
simply f, = n while the other two still need to be
determined. The velocity of the yam in the quasi-
stationary approximation 1s (Eq. 15 by Praeek et al. (2016)
where we substitute v, = 0):

v=-Vt+mxr=c{m-V0'e, —z'Ve,

This expression can then be used to derive the unit
vector in the direction of the yarn velocity:

v 1

—= (- Ve, —z'Ve,
V] ch((of'\fe')2+z'2'\f2[ ’ ]

From which then finally follow the two components
of the linear density of the force:

B —unc(m—Va"H

* J@-Voy 2tV
£ o unz'v
TJH - Ve 2V

(10)

Equation 7-10 are the simplified equations of motions
that we required. At first they appear more complex than
the vector Expressions 3 and 4 since, they are expressed
component by component. Nevertheless, they are indeed
simpler: the unknown functions are 0, z, ny, n;, T but we
have managed to eliminate r and n.. In the section part of
this research we will show that the function T can equally
be eliminated.

CONCLUSION

We have shown how the equation of motion on the
package surface can be obtamed from the general
equation of yarmn motion by considering the force of
friction (mstead of the air-drag as was the case for
the part of the yarn which forms the balloon). The
external force has two components: the normal
force of the package surface and the force of friction. We
have described the conditions for the validity of the
quasi-stationary approximation which was then used to
simplify the equation of motion to a two-dunensional
problem.  Analytical solutions allow a  better
understanding of the relation between the different
quantities.
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