Tournal of Engineering and Applied Sciences 12 (2): 353-362, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Measuring Software Architecture Stability Evolution in Object-Oriented
Open Source Systems

Hassan Almousa and Mamdouh Alenezi
College of Computer and Information Sciences, Prince Sultan University,
11586 Riyadh, Saudi Arabia

Abstract: Stability 1s the capability of a software artefact to stay intact while adapting to new changes and
requirements. Software architecture demonstrates the structure of a software system which can be presented
as software components and their interconnections. Measuring the stability of software architecture is an
mmportant endeavor that can help developers or project managers to make them aware about the situation of
the software being developed. Many software metrics have been introduced to measure the stability of the
software architecture. Some of these metrics measure software architecture at package-level while other ones
measure it at class-level. The principal goal of this study is to come up with a new easy mechanism to measure
the stability evolution in open source Java systems. Five different systems with ten versions are analyzed with
respect to the new suggested mechanism of measuring stability evolution.

Keywords: Software architecture, maintainabiliy, stability, software metric, measurement

INTRODUCTION

Measurement in software engineering i1s a central
feature to assess software quality characteristics such as
maintainability, reliability and portability. Software
measurement (Ruchika, 2015) 15 not only about assessing
software products but it can be used to assess the
software development process. These measurements can
contribute heavily in understanding software and
processes 1 many ways for example by using software
metrics, project managers will be able to know about the
software status and evaluate the quality of various
artifacts produced throughout software development.
Software metrics are needed to measure various software
attributes at different phases of the software
development. Software metrics can be helpful in
effectively measure different stages of the software
development life cycle. Continuously measure software
characteristic and development process usually supply
timely management useful information about improving
both process product. Tn this study, a new mechanism will
be designed to evaluate a sub quality characteristic which
15 the software stability and then a case study will be
discussed to see how the new mechanism will evaluate a
set of systems.

Software architecture: Software structure 1s usually
designed right after collecting and studying the software

requirements. Throughout this stage the software is built
with regards of components and mterconnections that tie
these components with each other (Ahmed et af., 2003).
This structure will demonstrate the architecture for
specific Moreover, the system
architecture 1s the mitial design piece that reports quality
objective such as mamntainability, stability, modifiability
and performance (Tonu et al., 2006). Software architecture
divides the system structure with regards of components
and their connections from the detailed design of these
individual components. Software architecture can be
defined at two levels, lugh level and lower level. At high
level, software 1s decomposed into subsystem where at
lower level, a software 13 decomposed into modules and
components. Interfaces are used to connect subsystems
or components with each other (Gomaa, 2011). Software
architecture signifies the critical design decisions that are
toughest to change and decide the overall system
proprieties (Olague ef al., 2006). These decisions should
be before working on the detailed aspects of the system.
These architecture decisions not only made at the
component level but they usually mclude the overall
system components and constrains. After deciding about
all architecture decisions, the team can work in
designing and delivering components
(Jazayer1, 2002).

Software architecture 1s not just how software is
constructed but it guides the software evolution (JTazayeri,

software. software

individual

Corresponding Author: Hassan Almousa, College of Computer and Information Sciences, Prince Sultan University,

11586 Rivadh, Saudi Arabia

J. Eng. Applied Sci., 12 (2): 353-362, 2017

2002). Now a days, it is impossible to have a software
product remains as it was since it is being developed. The
software will evolve continuously, requiring continuous
development and mamtenance (Hassaine ef af., 2012).
Changes come throughout software’s life in term of
adding new features, modifying existing features,
removing some features or fixing software defects. All
these actions that may accrue on the software architecture
can be referred as signs of aging. Signs of aging can
negatively affect the software architecture and make it
deviated from the original architecture. This deviation
could harm the software architecture and make it complex
and hard to maintain. By observing a software evolution,
information from the software architecture will be obtained
by evaluating this architecture. Therefore, software
metrics are needed to evaluate and assess to avoid the
negative impacts of signs of aging. Quantitative
information that obtained from the software metrics can
help developers to build systems with better quality.

Stability: The main goal of evaluating software
architecture is to validate the software architecture using
systematic procedures (Tonu et al., 2006). This evaluation
goal 13 to make sure that the architecture under
examination fulfil one or more of software quality
characteristics. According to ISO/AC square quality
standards, quality characteristics consist of four
characteristics: functionality, usability, reliability,
efficiency, portability and maintainability (Chidamber and
Kemerer, 1994). Maintainability is defined as the capability
of a software product to be modified. Maintainability 1s
ether categorized mto a set of sub characteristics:
stability, analyzability, changeability and testability. At
the architecture level, these characteristics will be refined
into coupling and modularity to be able to be evaluated
and assessed (Yu and Ramaswamy, 2009). As mentioned
before stability is a sub characteristic under
maintainability and it is defined as the capacity of the
software product to stay unaffected when facing new
requirements and/or changing i the environment.
Stability evolution is measured by computing the
differences between the stability of two versions while the
software 1s evolving. On other hand, it is impossible to
keep a software product unchanged. Then, what the
software is supposed to do? The answer is these new
changes have to be accommodated in the software
architecture and if not these changes will lead to the
degradation of the usefulness of the software product
(Ebad and Ahmed, 2015). From what have been said
before, it noticeable that stability is a primary criterion for
evaluating an architecture which can be seen as an
mndicator for software maturity (Hassane et al, 2012,

354

Roden et al., 2007). If a software product has some
components and these components are unstable, the
software architecture will require high mamtenance cost
and effort (Alenezi and Khellah, 2015). On other hand,
once an architecture for a software component is
recognized as a stabile component, this component can be
considered as a reusable component.

Litreruare review: This study browses different attempts
in the literature to measure the stability of specific
software. Aversano evaluated the software architecture
for a set of open source software projects. Stability 1s the
characteristic that is examined in order to evaluate the
software core architecture. The evolution of certain
software 13 considered when the software components are
changed during the software releases. Two metrics were
proposed to measure the stability of each release, Core
Design Instability (CDT) and Core Call Tnstability (CCT).
Both metrics provided a measure of how much the
architecture of a software system changed passing from
a release to another one. CDI metric finds the change in
terms of number of packages and CCT finds the change in
terms of number of the interactions among packages.
Smaller values mean less change which means greater
stability. All these metrics are based on calculating fan-in
and self-call for software packages. Alshayeb et al. (2011)
mentioned that none of the existing measures have
included all class aspects such as class relationships,
attributes and methods. First, they identified all properties
that affect the class stability, these properties are class
access level, class interface level, mherited class name,
class variable, class variable access-level, method
signature, method access level, method body. Then from
these properties, they proposed Class Stability Metric
(CSM). Stability is calculated by counting the number of
unchanged properties between two classes in version 1+1
and version i divided by the maximum possible change
value, then the summation of all these properties is
divided by the number of the properties which 1s eight.
The result their empirical study mdicated that their
metric is highly negatively correlated with maintenance
effort. Ti et al. (2000) proposed new metrics to measure
the stability of software designs. Researchers in L1 ef al.
(2000) lughlighted that metrics that are discovered by
Chidambe and Kemerer (1994) can’t measure change in the
class name, class number and class mheritance relations.
Tackling this deficiency of C and K metrics, they
proposed three new metrics: System Design Instability
(SDT), Class Implementation Instability (CIT) and System
Implementation Instability (SIT). The main purpose was to
justify how the information that is gathered from theses
metrics can help project managers to modify software

J. Eng. Applied Sci., 12 (2): 353-362, 2017

project plan. Their experimental analysis showed that SDI
and CIT can measure object oriented aspects that are
different from the aspects that are measured by C and K
metrics.
Abdeen et al. (2011) proposed a number of coupling
cohesion metrics that evaluate packages
modularization in legacy object-oriented systems. These
metrics are Index of Inter-Package Usage (IIPU), Index of
Tnter-Package Extending (TTPE), Package Focus (PF), Index
of Package Service Cohesion (IPSC) and Index of Package
Changing Impact (IPCT). They defined these metrics with
respect to some modularity principles that are related to
packages. Examples of these principles are information
hiding, changeability and communality of goal. These
metrics defined with respect to inter-class
dependencies: method call and mheritance relationships.
They wvalidated these against the mathematical
properties that have to be existed m any cohesion or
coupling metric.

Jazayer1 (2002) did retrospective analysis to assess
the architecture stability for twenty releases of
telecommunication software. The evaluation was mtended
to help project managers to predict how the future of the

and

are

architecture will look like. They used simple metrics,
module size, number of modules changed, number of
modules added, number of modules changed mn the same
sequence of release, number of programs in the same
version of release to observe the effect of evolution on
pair of releases.

Abreu and Melo (1996) evaluated the impact of object
oriented design on software quality characteristics such
as defect density, failure density and normalized rework.
They used a set of object oriented design metrics called
MOOD. These metrics are Method Hiding Factor (MHF),
Attribute Hiding Factor (AHF), Method Inheritance
Factor (MIF), Attribute Inheritance Factor (AIF),
Polymorphism Factor (POC) and Coupling Factor (COF).
To quantify the impact of OO design on software quality,
they developed a predictive model. The results show that
the design alternatives may have a strong influence on
resulting quality.

Olague et al. (2006) utilized entropy to reduce spikes
in the original SDI metric that is produced by Li et al.
(2000) and proposed the new SDIe metric. They discussed
the dynamic nature of the agile development process that
could obscure an analysis of software stability.
Furthermore, this study noted that the SDIe metric is
easier than the original SDI metric m computing the
stability. The justification is the fact that SDIe is able to
be automated mstead of requiring the close mvestigation
of code by human judgment. The SDTe metric is calculated
using the number classes added, deleted, changed and
unchanged from the previous versions. SDIe metric is

355

theoretically investigated and validated using the
Kitchenham criteria and the Zuse (1997) requirements
(Chidamber and Kemerer, 1994) for software measures.
Moreover SDlIe 1s empirically tested over two software
projects by comparing SDIe metric with the original SDI,
using SDle to assess the software evolution and
comparing SDTe metric to the Chidamber and Kemerer
(1994).

Tonu et al. (2006) proposed an approach that
evaluates stability for a particular software architecture.
The approach is based on analyzing the changes in the
software’s aspects form one release to another. Software
aspects can be structural, behavior or economical, their
focus was on the structural aspects only. Growth rate,
changes rate, coupling, cohesion are the measures that
are applied m their retrospective analysis. Then, evolution
sensitivity and evolution critical parts are identified by
observing how the subsystems are intercommected. This
approach is empirically evaluated on two spreadsheet

applications by selecing mine releases for each
application.
Ratiu started by definng two threshold

measurements that are used to identify which structure is
considered a god class or data class. First measurement 1s
used to identify god classes and it is based on these
metrics: Access To Foreign Data (ATFD) and Weighted
Method Count (WMC), Tight Class Cohesion (TCC),
Number of Attributes (NOA). While the another
measurement is used to identify data classes and it is
based on these metrics: Weight Of a Class (WOC),
Number Of Methods (NOM), Weighted Method Count
(WMC), Number Of Public Attributes (NOPA) and
Number Of Accessory Methods (NOAM). Then, they
proposed two measurements that are applied on the
history of a design structure. One of these measurements
1s used to measure the stability of a class (Stab) and the
other one is used to measure the persistence of a design
flaw (Pers). A class 13 considered stable with respect to
measurement M version 1 and number of versions if there
15 no change m the measurement M. Their approach 1s
applied on three case studies: two in-house projects and
one on a large open source framework. By observing the
data while applying their approach, they discussed
whither classes are god classes or data classes.

Bansiya (2000) introduced a framework to evaluate
architecture stability that 13 based on quantitative
assessment on the changes in versions using object
oriented metrics. The framework consists of four steps to
calculate the extent-of-change measure. First step is
identifying structure characteristics that evaluate the
architecture of framework. There are two types of
structure characteristics: static and dynamic. Example of
static structure characteristics are number of classes,

J. Eng. Applied Sci., 12 (2): 353-362, 2017

number of class hierarchies, mumber of single and multiple
inheritances and average depth and width of class
mheritance hierarchies. Examples of dynamic structure
characteristics are number of services a class provides,
class coupling and number of inheritance related classes.
Second step is defining metrics for each one of these
structure characteristics. Third step 1s collecting the data
from the defined metrics by applymng theme on a case
study. Finally, for each release the extent-of-change is
calculated by normalizing the values of these metrics.
Once all values are normalized, the aggregate-change 1s
calculated by summation of these values. Then, the
extent-of-change is calculated by taking the difference of
the aggregate change value of a version i with the
aggregate change value of the first version. The extent of
change measure can be used as an indicator to identify
the stability for a particular system structure, low number
indicates high stability.

MATERIALS AND METHODS

Designing stability metric: Object oriented design
concepts are very important factors that contribute in the
software development. The reason belund that is these
concepts address fundamental concerns about software
adaption and evolution. Information hiding is one of the
object oriented concepts and it 1s used to decide which
information should be visible and which mformation
should be hidden. Inheritance is another concept of
object oriented that is used for sharing and reusing
properties between classes. Concurrent processing 1s
another concept of object oriented and it describes how
software’s objects will interact with each other by
mvoking classes methods (Gomma, 2011). These concepts
can be evaluated for particular software in order to
recognize the software architecture. In thus study, the
focus will be on the concepts that affect the software
architecture in term of concurrent processing. It has been
recognize from the literature review that have been
reviewed 1n the previous section that most infusing
attributes which are used in order to determine the
stability for the software architecture are size, coupling
and cohesion. Some researches use couplng and
cohesion at the class level while other use coupling and
cohesion at architecture level by considering the software
packages. Furthermore, most of object oriented metrics
that measwre the software architecture for particular
system are class-level metrics (Alshayeb ef al., 2011,
Chidamber and Kemerer, 1994). In this study we are aiming
to introduce a metric that is used to measure the stability
of the software architecture based on these three
attributes; size, coupling and cohesion.

356

Identifying software architecture attributes: Software
architecture attributes that will be used to measure the
stability for the software architecture will be discussed in
this section. Each one of these attributes (Size, Cohesion
and Coupling) nominated to contribute in designing the
new stability metric. Size provides high view about the
amount of functionalities that have been developed for a
particular system durmg its life cycle. These
functionalities will be represented at the end for each
class in the system either by adding new line of codes or
methods or imported packages or adding new interfaces.
Therefore, size will be used as a good indicator to know if
new functionalities have been added in a system. This
indicator can be used as a measure to recognize the
stability for a particular system and many researches
used this measure to study the stability in their studies
like, (Olague et al., 2006; Bansiya, 2000). Coupling is the
degree that can be pomted out m order to know how
a class has dependences among other classes within the
software architecture. In a brief way, coupling illustrates
the relationships of a class with other classes. There is a
contradiction between coupling and software
engineering factors like maintainability, testability and
fault-proneness.

Let’s consider the case of maintainability to present
how coupling will be accrued. If a developer edits the
software architecture by making a modification in a class,
this change may require a modification on one of classes
that connect with this class. It is clear from the above that
coupling can be used as good indicator to recogmze the
change in the software architecture by observing
coupling between the software versions. This
reorganization will tack place by measuring the coupling
for a class during the software life cycle. There are many
metrics have been mtroduced to measure the coupling
at class-level. These metrics are coupling between
objects, message passing coupling, efferent coupling,
afferent coupling, response for class and local methods
calls. Many researches used coupling as a measure in
their study like (L1 et al., 2000; Abdeen ef al, 2011;
Tonu et al., 2006, Roden et al., 2007; Alenezi and Khellah,
2015).

Cohesion is used to identify the degree of how
class’s elements are related to each other. In another way
class cohesion describes the relationships between the
class attributes and methods. A class will be pointed out
as strong cohesion class, if there is a strong overlap
between its attributes and its methods. Maoreover,
designing strong class cohesion is seen as a good quality
attribute when evaluating the software architecture. On
the other hand, there is a contradiction between designing
high cohesive and complex class. Because designing very
high cohesive class will lead this class to some degree of

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Table 1: Class-level metrics

Group Metric Detention
Size NLOC Counts number of lines of code in a class
PACK Counts number of packages that are imported in a class
INTER Counts number of Interfaces that are implemented in a class
No.methods Counts number of methods that are defined in a class
Cohesion LCOM 1 Lack of Cohesion of Methods and it shows how the methods of a class are not related to each other to achieve the aims of the class
LCOM 2 Lack of Cohesion of Methods and it shows how the methods of a class are not related to each other to achieve the aims of the class
COH Cohesion and it shows how well the methods of a class co-operate to achieve the aims of the class
Coupling CBO Coupling between objects and it counts the mumber of classes that are coupled to a particular class
FAN-IN Afferent coupling and it counts the number of other classes that reference a class
FAN-OUT Efferent coupling and it counts the number of other classes that referenced by a class
RFC Response for class and it is defined as a set of methods that can be executed in response to a message received by another class
MPC Message passing coupling and it counts the numbers of messages passing among objects of a class
LMC Number of local method called in a class

complexity. The optimal way to avoid this kind of concemn
is having threshold for cohesion while designing the
software architectire. The previous sentences were
giving overview about the class cohesion and 1t benefits
and drawback and 1t 1s clear that cohesion can be used as
an attribute to recognize the stability for the software
architecture when a version of system compare with other
system versions. Many researches used cohesion as a
measure in their study like (L1 ef al., 2000, Olague et al.,
2006; Tonu et ai., 2006; Roden et al., 2007).

Selecting the software metrics for size, cohesion and
coupling attribute:. Software quality characteristics can’t
be evaluated directly. They have to be refined into
sub-characteristics. These sub-characteristics will be
refined mto attributes. The refinement attributes will be
measured by using some metrics. In our case, the
refinement attributes are size, coupling and cohesion. In
this section, the software metrics for each one of
refinement attributes that have been discussed previously
will be identified and defined. In order to identify the
metrics that will be nominated to be helped in designing
the new metric, we used a software metrics tool to identify
all metrics that give measurement at the class-level. Only
metrics that measure class-level with concerning size,
coupling and cohesion are selected. Table 1 groups the
metrics by the attributes and each metric in these groups
1s defined. However, not all metrics that are identified
Table 1 will be selected to design the new metrics. The
reason behind that is the attention will be given only to
metrics that their results are not correlated when they are
calculated for software. If there are two metrics their
results are strongly correlated, only one of theme will be
selected. Spearman correlation analysis will be used to
identify the metrics that are strongly correlated m each
group (size, cohesion and coupling) (Quah and Thwin,
2003).

Designing the stability metric: Stability 1s the ability of
a class to remain unchanged when new requirements are
mtroduced m a system. On the other hand, preventing a
system from adding new features something is hardly to

357

achieve. The system has to accommodate any new
requirement to get the end user’s satisfaction. If this not
happened, the end user’s will look to the systems
competitors. The stability of a system can be measured by
observing the system evolution. In our case the attributes
that have been selected will be observed. This
observation will take place by recognizing the difference
between the system’s versions (Yu and Ramaswama,
2009). One of the measurements proposed by Ratiu 1s the
stability of a class (Stab). They mentioned a class A 1s
considered stable with respect to measurement M version
i and number of versions N if there is no change in the
measurement M as shows in Eq. 1 and 2:

stab, (C,M) =1, M, (C)~M, ,(C)=0 (1)

stab, (C,M) =1,M_(C)— M, , (C)# 0 (2)

Once the stability of a class 1s identified in version 1,
the stability of this class in version N is calculated as the
number of versions i which a class was changed over the
total number of versions. Equation 3 describes how the

stability will be calculated:

2; stab, (C,M) (3)

stab, | =
n-1

Equation 3 measure the stability at class-level but in
this study the concern is paid to measure the stability at
architecture-level. Moreover, Eq. 3 identify the stability
based on one method but in this study there 1s three
attributes (size, cohesion and coupling) and each one of
these attributes has a set of metrics. In this study, Eq. 1
and 3 will be modified to measure the stability for the
software architecture for a system. Instead of calculating
the stability for a system by considering each class mn the
system and using only a single metric, the stability for the
whole system will be measured by considering more than
one metrics. The following steps show how the stability

for the software architecture will be measured.

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Step 1: Extracting class-level metric using software
metrics tool. The value of the class-level metrics for the
selected attributes will be calculated by extracted their
data using a software metrics tool for each class in the
systerm.

Step 2: Calculating the average for the class-level metrics.
The average will be calculated for each metric in the
system after the metrics values being extracted.

Step 3: Calculating the aggregated metric. The average
of all metrics will be aggregated in one metric to be
used to compare its value with the system’s versions.
Equation 4 describes how all metrics M in version i will
be combined:

aggregated metric, = Ej: AVG(M) 4)

Step 4: Do comparison between the system versions.
Step 1-3 will be repeated for each version i for the selected
system to obtained the aggregated metric. Each version 1
will be considered stable with respect to the aggregated
metric version i and number of versions N if there is no
change in the aggregated metric. Metric (Eq. 5) and metric
(Eq. 6) illustrate how the aggregated metric will be
compared between the system versions:

stab, =1, Aggregated Metric, — (5)
Aggregated Metric, | =0

stab, =0, Aggregated Metric, — (6)
Aggregated Metric, | #0

Step 5: Measuring the stability for the selected system.
The stability for the selected system will be measured by
evaluating the stab; which is described in step 4, between
a pawr of versions for N versions. After the stab evaluated
for each versioni, stab1 will be aggregated for all
Versions N then it will be divided by total number of
versions N-1. Equation 7 shows how the system stability

2; stab,

n-1

will be measured:

9

Systern stab, |

RESULTS AND DISCUSSION

In this research, a case study will be presented in
which five object-oriented java systems are selected. All
these systems are open source systems and they
downloaded from Sourceforge library. Since our stability

358

metric at its early stage requires at least a pair of versions,
it is mandatory to have a large number of versions to be
trained. From this concern we agreed to download ten
versions for each one of the selected systems. One of the
crucial requirements to start applying this study is to
choose a software metric tool to extract the results of
class-level metrics. At the first of this section we will talk
about the benefits of open source systems. Then, the
selected software metric tool will be discussed. After that,
a summary about the selected systems will be given.
Fmally, the results of applying our stability metric will be
shown.

Open source systems: Open source systems have
received a lot of attention to be used by practitioners in
these days. The reason behind that is the availability of a
large number of systems in different domains. A
researcher downloads an open sowce system for
applying the required analysis form his or her study. A
programmer modifies an open source system to develop
a particular need. It 1s obvious from the above that the
availability of open source system will reduce cost, effort
and time to obtam a system meets a desired need
(Ding et al., 2014). There are many open source libraries
are available on the internet. These libraries are
sourceforge, Gethub, Google code and Tigers. In this
study sourceforge will be used to download five systems
with ten versions. In order to evaluate our stability metric,
we realized that it is necessary to put some criteria to help
us in selecting an open source system. Following are the
criteria that we stick on to select a set of open source
systems:

All selected systems have to be written in Java

All selected systems have to be object-oriented

The selected systems have to be from different
domains

There are multiple versions for the selected systems.
There 1s a varation m the number of classes for the
selected systems

Table 2 gives a brief summary for the selected open
source systems.

Software One of the fundamental
requiremnents for out stability metric 1s to have a tool
provides many metrics at class level for the attributes that
are selected to design owr stability metric. Another
requirement 1s the tool should be able to analysis systems
that are written in Java. During our search for the most
appropriate tools that accommodate our needs, we found
many software metric tools. Some of these tools provide

metric tool:

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Table 2: Selected open source system

System Domain Description

SQ8im Scientific/Engineering

This system used to model simple probabilistic queue, dynamic, factories, business, services and other

RarCode generator Development/Dynamic content This system used to generate barcode of different types like EANB, UPCA, etc.

Ezbilling Finance This system used to manage the invoices that will be issued
Catan Garne This systern allows aimy one to play board game against the cormputer
EuroBudget Accounting This system is a free personal accounting tool

Table 3: Class-level metrics grouped by size, cohesion and coupling

Size Cohesion Coupling

Class name NLOC Nomethods INTR ~ PACK LCOM LCOM2 COH RFC CBO MPC F-IN FOUT LMC
BarSet 50 6 0 0 0.2 0 0.33 6 24 0 24 0 1
RarcodeEncoder 4 2 0 0 0 2 0 2 16 0 14 2 0
BarcodePainter 3 1 0 2 0 1 0 1 8 0 7 1 0
RaselineTextPainter 24 3 1 5 1 4 0.33 3 5 0 4 1 0
CircularPainter 55 3 1 8 1 4 0.33 3 3 0 1 2 0
CodeabarEncoder 84 10 1 0 0.01 30 0.08 11 7 1 4 3 1
CodellEncoder 59 6 1 0 0.1 14 0.17 7 6 1 3 3 1
Codel 2Encoder 186 7 1 1 0.02 17 0.11 8 7 1 4 3 2
Code39Encoder 100 7 1 0 0.12 17 0.14 8 8 1 5 3 2
Code39ExtEncoder 45 6 0 0 0.4 14 0.17 7 7 1 3 4 1
Code93Encoder 127 7 1 0 0.12 17 0.14 8 8 1 5 3 2
Code93ExtEncoder 51 6 0 0 0.4 14 0.17 7 7 1 3 4 1
DirectGif89Frame 29 3 0 3 0 0 1 3 3 0 2 1 0
EAN13Encoder 46 4 0 0 0.33 8 0.25 5 8 1 5 3 0
EANI13TextPainter 35 3 1 5 1 4 0.33 3 5 0 4 1 0
EANSEncoder 36 4 0 0 1 8 0.25 4 7 0 4 3 0
EANS8TextPainter 34 3 1 5 1 4 0.33 3 5 0 4 1 0
EANEncoder 35 2 1 0 4 2 0 3 7 1 4 3 1
Gif89Encoder 163 22 0 11 0.02 189 0.18 24 7 2 2 5 7
Gif89Frame 67 12 0 3 0.04 68 0.13 13 6 1 4 2 2
GifColourTable 94 11 0 0 0.06 40 0.25 11 5 0 1 4 3
GifPixelsEncoder 240 12 0 0 0.14 66 0.17 12 1 0 1 0 10
HeightCodedPainter 34 3 1 4 1 4 0.33 3 6 0 4 2 0
TmageUtil 33 4 0 7 0 8 0.25 4 3 0 1 2 2
IndexGif89Frame 10 2 0 0 0 0 0 2 3 0 2 1 0
Tnterleaved2of SEncoder 38 4 0 0 0.11 8 0.25 5 7 1 4 3 0
InvalidAttributeException 15 4 0 0 1 4 0 4 23 0 23 0 0
JBarcode 121 23 0 9 0.03 244 0.12 23 9 0 4 5 4
JBarcodeComp onent 170 35 1 10 Q Q 0.2 36 5 0 1 5 1

many metrics for the selected attributes while other
provides few metrics. Examples of these tools are
JHWAK, Source Code Metric Plugin and Simple Code
Metric Plugin. In this study we used THAWK tool to
extract the results of class-level metrics. JHAWK 15 a
standalone application provides plenty of metrics at
different levels like package level, class-level and
method-level. One of the most important features that
attract us to select THAWK 15 the ability to choose only
the metrics that we want to be extracted when analyzing
a system. These metrics can be managed through
preferences in tool setting. JTHAWK has the ability to
extract the results of the metrics n different formats like
CSV, HTML and XML

Appling the stability metric: Our stability metric needs to
be validated by selecting a set of open source systems.
The mam objective from this validation is to see how our
stability metric will evaluate the selected systems. As
mentioned previously not all metrics that contribute to

359

measure the size, cohesion and coupling will be
nominated to design our stability metric. Therefore,
spearman correlation analysis 1s applied to discard the
metrics that are strongly correlated. All size, cohesion and
coupling metric’s results for all system’s versions are
extracted. Then, the related metrics are grouped with each
other. For examples, coupling metrics will be combined in
one group. Table 3 shows how metrics and their results
are grouped by size, cohesion and coupling attributes. A
spearman correlation analysis will be applied in each one
of these groups. Table 4-6 show the spearman correlation
analysis results for size, cohesion and coupling attributes,
respectively.

When we see the results for spearman correlation
analysis results for size group, we realized that there is a
strong correlation between NLOC and number of
methods. Therefore, only one of them will be chosen and
in our case study we select NLOC. When we see the
results for spearman correlation analysis results for
cohesion group, we realized all metrics are not correlated

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Table 4: Spearman correlation analysis results for size metrics

Table 9: Stability result for Catan

Size Variables Caton
1 92.3574
Variables NLOC No. Meth INTR PACK 2 90.57128 (0)
NLOC 1 3 90.57128 (1)
No. Meth 0.684145 1 4 90.56011 (0)
INTR 0.144081 0.309831 1 5 90.57128 ()
PACK -0.0677 -0.12603 -0.06122 1 6 90.57128 (1)
7 90.57128 (1)
Table 5: Spearman correlation analysis results for cohesion metrics 8 90.57128 (1)
Ciohesion 9 90.57128 (1)
10 90.57128 (1)
Variables LCOM LCOM?2 COH
LCOM 1 Now size, cohesion and coupling metrics that will be
LCOM2 -0.03591 1 . d desi bili . dentified
COH 0.263737 -0.03994 1 nominate .to esign our stability metrics are identified.
These metrnics are NLOC, LCOM, LCOM 2, COH and CBO.
Table 6: Spearman correlation analysis results for coupling metrics We are ready now to apply the steps n following for each
Coupling one of the selected systems to measure its architecture.
Variables RFC CBO MPC F-IN FOUT LMC . .
REC 1 Step 1: Extracting class-level metric.
CBO 0.712879 1
MPC 046271 0.567566 1 Step 2: Calculating the average for the class-level metrics.
F-IN 0.589835 0.869623 0.53455 1
FouT 0.577303 0726984 0333192 0301873 1))
LMC 0.867593 0.655508 0.354002 0(.530947 0.558953 1 Step 3: Calculating the aggregated metric.
Table 7: Stability result for SQSim - Step 4: Do comparison between the system versions.
Variables S0Q8im
1 66.77478 _ -
2 66.75304 (0) Step 5: Measuring the stability for the selected system.
3 66.75304 (1)
4 66.75304 (1 - .
5 66.75304 8 T?able 7 Shows.the result for our stqblhty metric qf‘Fer
6 66.84 (0 applying the previous steps on SQSim. Our stability
7 66.75304 (0) metric evaluates the architecture for this system and it
8 66.75304 (1) ves T6%. W - of sub .
g 66.75304 (1) gives 0. We compare a pair of subsequence versions
10 66.75304 (1) and we realized the aggregated metric results for V2, 6 and
Stability: 67% 7 are different when they compare with V1, 5 and 6.
Table 8 shows the result for our stability metric after
Table 8: Stability result for barcode generator Ivi th . d
Variables = — applying the previous steps on Barcode Generator. Our
1 112.8988 Stabi.lity meuic evaluates the architectgre for this system
2 112.8988 (0) and 1t gives 89%. We compare a pair of subsequence
3 112.8988 (1) versions and we realized the aggregated metric results for
4 112.8988(1) < difF hort | dwith
5 112.8988 (1) V2 1s different when it compared w1 Vl... .
6 112.8988(1) Table 9 shows the result for our stability metric after
; H; ggzg 8; applying the previous steps on Catan. Our stability metric
a 112.8988) evaluates the architect}lre for this system apd it gives
10 112.8988 (1) 67%. We compare a pair of subsequence versions and we
Stability: 8% realized the aggregated metric results for V3-V5 are

with each other. Therefore, all of them are nominated to
contribute in designing our stability metric. Finally,
spearman correlation analysis results for coupling metric
shows all coupling metrics are strongly correlated.
Therefore, selection one of them 18 enough and we select
Coupling Between Objects (CBO). The reason for
selecting this metric is CBO includes all dependences
mgomg and outgoing (Bakar, 2016).

different when they compare with V2-V4.

Table 10 shows the result for our stability metric after
applying the previous steps on FuroBudget. Our stability
metric evaluates the architecture for thus system and it
gives 22%. We compare a pair of subsequence versions
and we realized the aggregated metric results for V2, 3, 4,
5, 6,7 and 10 are different when they compare with V1, 2,
3,4 5 6 and 9. Table 11 and 12 shows the result for
our stability metric after applying the previous steps on

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Table 10: Stability result for BuroBudget

Variables EuroBudget
1 92.0466

2 91.39917 (0)
3 91.29543 (0)
4 93.62827 (0)
5 88.73376 (0)
6 88.72273 (0)
7 88.70638 (0)
8 88.70638 (1)
9 88.70638 (1)
10 88.72273 (0)
Stability: 22%

Table 11: Stability result for Ezbilling

Variables Ezbilling

1 58.16569

2 58.16569 (1)
3 58.16569 (1)
4 58.16569 (1)
5 58.16569 (1)
6 58.16569 (1)
7 58.16569 (1)
8 58.16569 (1)
9 58.19569 (1)
10 58.19569 (1)
Stability: 100%

Table 12: Stability result for all systems

System Stability (®0)
EuroBudget 22
RarCodeGenerator 89

Catan 57
Ezbilling 100

SQ8im 67

EzBilling. Our stability metric evaluates the architecture
for this system and it gives 100%. We compare a pair of
subsequence versions and we realized the aggregated
metric results for all versions are the same.

CONCLUSION

In conclusion, the stability metric that will be used to
measure the architecture for a system is designed. There
are five steps have to followed in order to calculate the
stability for a selected system. These steps are extracting
class-level metric using software metrics tool, calculating
the average for the class-level metric, calculating the
aggregated metric, do comparison between the system
versions and measuring the stability for the selected
system. We have demonstrated our stability metric by
applying it on five systems with ten versions. Tn our case
study, we started by tallking about the benefits of open
source systems and we ended by showing the results our
stability metric. The stability results for each one of the
selected system. The stability metrics evaluate the
selected systems and based on it 18 results we realized
that the most stabile system 1s Ezbilling while Eurobudget
system is instable. The stability for Catan and SQSim are

the same. Without having a large set of versions for a
particular system, our stability metric will not be able to
work mn order to give a useful stability result.

REFERENCES
Abdeenn, H., S. Ducasse and H. Sahracu, 2011.
Modularization — metrics: Assessing package

organization in legacy large object-oriented software.
Proceedings of the 2011 18th Working Conference on
Reverse Engineenng, October 17-20, 2011, IEEE, Lalle,
France, ISBN:978-1-4577-1948-6, pp: 394-398.

Abreu, F.B. and W. Melo, 1996. Evaluating the impact of
object-oriented design on software quality.
Proceedings of the 3rd International Symposium on
Software Metrics: From Measurement To Empirical
Results, March 25-26, 1996, IEEE, Berlin, Germany,
pp: 90-99.

Ahmed, M., R. Rufai, J. AlGhamdi and 8. Khan, 2003,
Measuring architectural stability in object oriented
software. Proceedings of the UML Conference on
Stable Analysis Patterns: A True Problem
Understanding with UML, October 20, 2003, UML,
San Francisco, California, USA., pp: 21-28.

Alenezi, M. and F. Khellah, 2015. Evolution impact on
architecture stability in open-source projects. Int. J.
Cloud Appl. Comput., 5: 24-35.

Alshayeb, M., M. Naji, M.O. Elish and A.J. Ghamdi, 2011.
Towards measuring object-oriented class stability.
IET. Software, 5: 415-424.

Bakar, N.S.A.A. 2016, The analysis of object-oriented
metrics in CH++ programs. Lect. Notes Software Eng.,
4: 48-48.

Bansiya, J., 2000. Evaluating framework architecture
structural stability. ACM. Comput. Surv., Vol. 32,
10.1145/351936.351954

Chidamber, S.R. and C.K. Kemerer, 1994. A metrics suite
for object oriented design. TEEE Trans. Software Eng.,
20: 476-493,

Ding, W., P. Liang, A. Tang, V.H. Vliet and M. Shahin,
2014. How do open source communities document
software architecture: An exploratory swrvey.
Proceedings of the 2014 15th International
Conference on Engmeering of Complex Computer
Systems (ICECCS), August 4-7, 2014, IEEE, Wuhan,
China, ISBN:978-1-4799-5482-7, pp: 136-145.

Ebad, S.A. and M.A. Ahmed, 2015. Measuring stability of
object-oriented software architectures. TET. Software,
S: 76-82.

Gomaa, H., 2011. Software Modeling and Design: UML,
Use Cases, Patterns and Software Architectures. 1st
Edn., Cambridge University Press, Cambridge,
ISBN-13: 978-05217641 48, Pages: 576.

J. Eng. Applied Sci., 12 (2): 353-362, 2017

Hassaine, S., Y.G. Gueheneuc, S. Hamel and G. Antoniol,
2012. Advise: Architectural decay in software
evolution. Proceedings of the 2012 16th European
Conference on Software Maintenance and
Reengineering (CSMR), March 27-30, 2012, TEEE,
Quebec, Canada, ISBN:978-1-4673-0984-4, pp:
267-276.

Tazayeri, M., 2002. On Architectural Stability and
Evolution. Springer, Berlin, Germany.

Li, W., L. Etzkorn, C. Davis and J. Talburt, 2000. An

empirical study of object-oriented system
evolution. Inf. Software Technol., 42:
373-381.

Olague, HM., L.H. Etzkorn, W. L1 and G. Cox, 2006.
Assessing design mstability n iterative (agile)
object-oriented projects. J. Software Maint. Evol. Res.
Pract., 18: 237-266.

Quah, T.S. and M.M.T. Thwin, 2003. Application of neural
networks for software quality prediction using
object-oriented metrics. of the
International Conference on Software Maintenance
(ICSMO03), September 22-26, 2003, [EEE, Singapore,
[SBN:0-7685-1905-9, pp: 116-125.

Proceedings

362

Roden, P.L., 8. Virani, L. H. Etzkorn and S. Messimer, 2007
An empirical study of the relationship of stability
metrics and the gmood quality models over software
developed using highly iterative or agile software
processes. Proceedings of the 7th IEEE International
Working Conference on Source Code Analysis and
Manipulation (SCAMO7), September 30-October 1,
2007, IEEE, Florence, Alabama, ISBN:
978-0-7695-2880-9, pp: 171-179.

Ruchika, M., 2015. Empirical Research in Software
Engineering: Concepts, Analysis and Applications.
CRC Press, New York, USA.

Tomy, S.A., A. Ashlan and T.. Tahvildari, 2006. Evaluating
architectural stability using a metric-based approach.
Proceedings of the Conference on Software
Meaintenance and Reengineering (CSMRO06), March
22-24, 2006, IEEE, Canada, ISBN:0-7695-2536-9, pp:
10-10.

Yu, L. and S. Ramaswamy, 2009. Measuring the
evolutionary stability of software systems: Case
studies of Linux and Free BSD. IET. Software, 3:
26-36.

Zuse, H., 1997. A Framework of Software Measurement.
Walter de Gruyter Company, New York, USA., Pages:
402.

	353-362_Page_01
	353-362_Page_02
	353-362_Page_03
	353-362_Page_04
	353-362_Page_05
	353-362_Page_06
	353-362_Page_07
	353-362_Page_08
	353-362_Page_09
	353-362_Page_10

