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Abstract: This study focuses on the solution of the Dissipative Nonlinear Schrodinger equation with Variable
coefficient (DNLSV) by using Homotopy Perturbation Method (FIPM) to obtain approximate analytical solution.
The procedure of the method is systematically illustrated. The result obtained is then compared with the
progressive wave solution to verify the accuracy of the HPM solution. The absolute error of the HPM solution
of the DNLSV equation with the progressive wave solution will later be carried out using the MATLAB

Program.
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INTRODUCTION

Over recent years, there has been an explosive
growth of imterest in the development of non-linear
science among researchers in the analytical techniques for
nonlinear problems. Homotopy Perturbation Method
(HPM) is one of the techniques proposed to solve these
nonlinear problems. HPM was firstly proposed by He
(1999). It was further developed and improved by He
(2000, 2003, 2004). The HPM 1is a combmation of
homotopy  technique in topology and classical
perturbation technique. Tt deforms a difficult problem into
a simple problem. This method does not require a
small parameter in an equation as needed in traditional
perturbation method. The solution 1s obtained as a
summation of an mnfinite series which usually converges
rapidly to the exact solution if such a solution exists. The
HPM does not involve discretization of variables as most
of numerical methods. Hence, it is free from rounding off
errors causing loss of accuracy. The HPM has significant
advantage in that it provides an approximate analytical
solution to a wide range problems arising in different
fields. The HPM is applied to nonlinear equation (1.1, 2009;
Noor and Khan, 2012) system of linear equations
(Yusufoglu, 2009) time-dependent differential equation
(Babolian et al, 2009) hyperbolic partial differential
equation (Biazar and Ghazvini, 2008) coupled non-linear
partial differential equations (Sweilam and Khader,
2009) two-dimensional non-linear differential equation

(Ghasemi et al., 2007) linear wave equation and non-linear
diffusion equation (Chun et «l, 2009) Schrodinger
equation and nonlinear schrodinger equation (Mousa and
Ragab, 2008) fractional non-linear schrodinger equation
(Baleanu et al., 2009) and two-dimensional non-linear
schrodinger equation.

There are many physical phenomena in engineering
and physics can be described by some nonlinear
differential equation. The Non-Linear Schrodinger (NT3)
equation with cubic non-linearity in the form:

2
i%—gwl%mzwuzq 7 =-1 (1
Where:
U = The complex-valued function of the spatial
coordinates £ and time t
p, and p, = Real parameters correspond to a focusing (p,

p=0) or defocusing (p; p,<0) effects of the
non-limearity

The NLS Eq. 1 arises in various physical contexts in
the description of dispersive nonlinear waves mcluding
nonlmear optics, hydrodynamics, plasma physics,
quantum mechanics, water waves and super conductivity.
The NLS Eq. 1 18 the simplest representative equation
describing the self-modulation of one dimensional
monochromatic plane waves in dispersive media. It
exhibits a balance between the non-linearity and
dispersion.
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Due to its application on arterial mechanism the
modulation of small-but-finite amplitude pressure waves
i a fluid-filled distensible, linear elastic tube has been
studied by Ravindran and Prasad (1979) and they
obtained the NL.S Eq. 1. Demiray and co-workers studied
the modulation of nonlinear wave in fluid-filled elastic
tube (Antar and Demiray, 1999) and viscoelastic tube
(Akgun and Demiray 1999) filled with an mviscid fluid.
They obtained the NLS Eq. 1 and Dissipative Non-Linear
Schrodinger (DNLS) Eq. 2 as follows:

.du U 2 .
i T G U] Ui U =0 )

where, iu, denotes the dissipative term. Recently, Choy
(2014) studied the nonlinear wave modulation of a thin
elastic tube with a symmetrical stenosis. By using an
approximate equation of a viscous fluid, she showed
that the governing equations can be reduced to the
Dissipative Nonlinear Schrodinger with Variable
coefficient (DNLSV) Eq. 3 as follows:

9uU | 9'U .
1¥+u1 o +1, [U[ U-ph, (1) U+in,U =0 3)

where p;h(t) U denotes the variable coefficient term.
Notice that when p;h,(t) U= 0 and 1p,17 = O both Eq. 2 and
3 reduce back to the NLS Eq. 1. The NLS Eq. 1 had
been solved by wvarious numerical methods such as
Crank-Nicolson finite-difference method (Taha and
Ablowitz, 1984) split-step finite-difference method
(Wang, 2005) compact split-step fimte-difference method
(Dehghan and Talee1, 2010), Adomian Decomposition
Method (ADM) (Sayed and Kaya, 2006; Bratsos ef al.,
2008) and HPM (Mousaa and Ragab, 2008).

Many studies have been devoted to the numerical
solution of the NL.S Eq. 1 and the HPM solution of the
NLS Eq. 1. However, none of the literature has dealt with
the HPM solution of the DNLSV Eq. 3. Motivated by the
works of wave modulation by Choy (2014) which yielded
the DNLSV Eq. 3, numerical works as well as the HPM
solution of the NL.S Eq. 1 we are going to approximate the
DNLSV Eq. 3 using the HPM. By using the conditions
from a previous study we then compare the solution with
progressive wave obtained by Choy (2014).

MATERIALS AND METHODS
Homotopy Perturbation Method: To illustrate the basic

ideas of HPM, we consider the following non-linear
differential Eq. 4:

A(UYE (1)=0, 1eQ (4)
with the boundary condition:
B(U,0U/on)=0, rel (5)
Where:
A = A general differential operator
B = A boundary operator
f(r) = Known as analytical function

I' = The boundary of the domain £

The operator A can be divided into two parts of
linear, L and non-linear N. Therefore, Eq. 1 can be
rewritten as follow:

L(U)+N(U)f(r)=0 (6)

By the homotopy technique, we construct a
homotopy V(r, p): Qx[0, 1]-R which satisfies:

H(V,p) = (1-p)[ L(V)-L(U,) [+p[A(V)-f(r}]=0 (7)
Or:

H(V.p)=L(V)-L{U,)+pL(U, J+p[N(V)-f(r)]=0
(8)

where pe[0, 1] 13 an embedding parameter, u, 1s an initial
approximation of Eg. 4 which satisfies the boundary
condition. Obviously from Eq. 7and &, we have:

H{V,0)=L(V)-L(U,)=0 ©)
H(V,1)=A(V)£(r)=0 (10)

and the changing process of p from zero to unity is just
that of V(r,p) changes from Uyr) to U (r). In topology, this
is called deformation L(V)-L{U,) and A(V)-f(r) is called
homotopic. According to the HPM firstly, we use the
embedding parameter p as a small parameter and assume
that the solution of Eq. 7 can be written as a power series
np:

V=V 4pV+p°V,+p'V, - (1)

setting p = 1, results in approximate solution of Eq. 4:

U=lmV = V,+V+V,+V, +--- (12)

p—1
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The series Eq. 12 is convergent for most cases.
However, convergent rate depends on the non-linear
operator A(V).

RESULTS AND DISCUSSION
An application of HPM: Consider the following DNLSV

Eq. 3 with imtial condition given by Choy (2014) as
follows:
L
2
U(& 1) =atanh [—Z“ZJ al |e"t (13)
Y,

Using HPM, we construct a homotopy in the
following form:

BV BU
H(Vp) =i a2 |+
2 (14)
oY o'V .
pli i, -+, [V V-ph, (1) V+iR,U |=
T ok
Or:
H(V.p) —(l—p)[i%v—ia:“}—
2 T T 15)
OV 0V = .
p{la”““aaz+M2V2V_“3hl(T)V+IM4U}_O

where, Uy(E, 1) = Vy(E, )= U, O),|v|*=v¥ and V is the
conjugate of V. Suppose that the series solution of
Eq. 14 and 1its comjugate have the following forms:

V=V, (&) v (ET)+ (16)
PV, (& 0)+p V(& 1)+

V =V, (E,1)+pV, (ET)+ an
PV (&)t Y, (€ 1)+

Substituting Eq. 16 and 17 mto Eq. 15 and collecting
the terms with 1dentical powers of p, leads to:

OV, aU
L T e
2
p1:iaV1+P~1 ? VDJFMZVDZ V-
dt ag, (19)
Hoh (2) ViV, 1 O =
dT
.oV 'V,
p2:1¥2+}.l.1 fu;zl ﬂ‘l'z( V+2VUV1VU) (20)

wsh, (T)V, Hig, v, =

The given initial value admits the use of:

My T ke -
v (20)= “a“h( zMJa‘ie’ ey

1i=12.3.-..

> 3 3y

The solutions read:

V(&)= atanh{ ‘—;ﬁlaé]ei“ (22)

Vl(é,r)—atanh[ = a&J[ ifa’u, - ulefw)]Te‘Kﬁ*

M arc si . et
" aﬁ_,} tan sinh (0.37) |

(23)

and so on. The solution of Eq. 3 can be obtained by
seting p=1 mEq. 11:

V=V +V +V, + - (24)
Thus, we have:
U(ET)=V(ET) =V, (ET)+V, (E1)+ -0 =
atanh[ e a&}iKiJr
2y,
M, 2 2 -
atanh[ zular‘é}[ (2, -1 u, ) [ze™- )

10. v .
—iap, tanh| [-—2af |arctan| sinh(0.3t) |e*5-
i | [ o 030
2a’y, , Mo gech?| [ Pear ireist

2u, 2M,

The progressive wave solution (quite close to exact
solution) of the DNLSV Eq. 3 is given by Choy (2014) as
follow:

(26)
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Table 1: The absolute error of the DNLSV equation for different spatial values, £ at T = 0.0001

Spatial parameter (£) -4 -3 -2 -1

0 1 2 3 4

Leo 0.0045 0.0045 0.0045

0.0045

0 0.0045 0.0045 0.0045 0.0045

Fig. 1: 3D-plot of the HPM solution of the DNLSV Eq. 3
under imtial condition (Chun et al., 2009)
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Fig. 2:2D-plot of the HPM solution of the DNLSV Eq. 3
under initial condition (Chun et af., 2009)

where, Q=pK*w,ale*™ +uh (1). Given that these numerical
values of the coefficient by Choy (2014) h(t) = sech
(0.31), p,=-0.1548, p, =26.4295, 1, =7.3572, pu, = 0.1082
provideda=1and K =2,

Figure 1 and 3 show the 3D-plot of the HPM solution
and progressive wave solution of the DNLSV Eq. 3 with
spatial parameter, £ and time, T, respectively while Fig. 2-4

Fig. 3: 3D-plot of the progressive wave solution of the
DNLSV Eq. 3
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Fig. 4: 2D-plot of the progressive wave solution of the
DNLSV Eq. 3

show the ZD-plot of HPM solution and the progressive
wave solution of the DNL SV Eq. 3 with spatial parameter,
£ at time t = 0.0001, respectively. Figure 5 shows the
absolute error of the DNLSV Eq. 3. Table 1 shows the
absolute error between the progressive wave and
HPM solutions for certain spatial points, £ and at
time, T = 0.0001.
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Fig. 5: 3D-plot of the absolute error of the DNLSV Eq. 3
CONCLUSION

In this researche, HPM is successfully applied to
solve the DNLSV Eq. 3. The solution obtained by HPM is
an mfimite series for appropriate mitial condition that can
be expressed m a closed form to the exact solution. The
solution obtained by HPM is found to be a powerful
mathematical tool which can be used to solve nonlinear
partial differential equations.
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