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Abstract: Tn this study, we would like to discuss the analytical solution of non-linear partial differential
systems. The solutions are obtained using the technique of power series to solve linear ordinary differential

equations. This method ensures the theoretical exactness of the approximate solution. Several systems are
solved using this method and comparisons of the approximate solutions with the exact ones are demonstrated.
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INTRODUCTION

It is well known that there are several methods that
can be used to find general solutions to linear PDEs. On
the contrary for non-linear PDEs it 1s well known that
there are no generally applicable methods to solve such
nonlinear equations. A glance at the literature shows that
there are some known methods which have been applied
to solve special cases of nonlinear PDEs. For example, the
split-step method 1s a computational method that has
been used to solve specific equations like nonlinear
Schrodinger equation (Taha and Ablowitz, 1984).

Nevertheless, some thechniques can be used to solve
serveral types of nonlinear equations such as the
homotopy principle which is the most powerful method to
solve underdetermined equations. In some cases, a PDE
can be solved via., perturbation analysis in which the
solution is considered to be a correction to an equation
with a known solution (Chun et af., 2009). Alternatively
there are numerical techniques that solve nonlinear PDEs
such as the fimte difference method and the finite element
methods (Pelosi, 2007). Many mteresting problems in
science and engineering can be solved in this way using
computers.

A general approach to solve PDEs uses the symmetry
property of differential equations, the continuous
infinitesimal transformations of solutions to solutions
(Lie theory) (Hawkins, 2000). The continuous group
theory, Lie algebras and differential geometry are used to
understand the structure of linear and non-linear
partial differential equations. Then, generating integrable
equations to find their Lax pairs recursion operators,
Backlund transform and finally finding exact analytic
solutions to PDEs (Polyamn and Zaitsev, 2004).

MATERIALS AND METHODS

Power series method for nonlinear partial differential
equations: Power series is an old technique for solving

linear ordinary differential equations. The efficiency of
this standard techmque in solving linear ODE with
variable coefficients is well known. An extension known
as Frobenius method allows tackling differential
equations with coefficients that are not analytic.
Recently the method has been used to solve non-linear
ODEs (Fairen et al., 2008). Furthermore, Kurulay and
Bayram (2009) used power series to solve linear second
order PDEs.

In thus research, we apply the power series method to
nonlinear PDEs. Analytical solutions are found by using
algebraic series. Manipulation of the equations leads to
very convement recurrence relations that ensure the
exactness of the solution as well as the computational
efficiency of the method. The method is straightforward
and can be programmed using any mathematical package.
The efficiency of this method 1s illustrated through some
examples and obtained solutions compared with exact
solutions.

The general algebra for solving nonlinear ODEs is
explained by considering an analytical function x = x(T)
defined in {1: O<T<1}. Assume its expansion i power
series as:

X (D)= Zalkrk ey
k-0
And for any mnteger m, x () of power m 1s expressed as:
x (D" = iamkrk (2)
k=0

The following relation 1s an essential condition to be
satisfied i order to reveal the desired recurrence relation:

x™(17) = x™ (D)x(T) (3)

After replacing the series expressions in each factor
of Eq. 3 the following recurrence relation is obtained:
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To find the series expansion of a product of two
functions assumes that the functions f(t) and g(t) are
analytic at © = 0 and are defined in {1: O<t<1}. Let:

fm=Yatigm=Ybt (5)
And:
hit)=f (Thg (1) (6)

Then, the function h is also analytic at T = 0 and
defined n I, therefore the series expansion for h(T) 1s:

h(m=Yor (7)
Where:

C*Za“s Eals s 1=0,1,2, .. ®)

and the series expansion for the nth derivative x(t) can be
written as:

™ (r) = i D a(km)rk &)
=0

where, ¢, = (j+1)(G+2)...(j+k), where k and j are postive
inttegers. To generalize this method for solving nonlinear
PDEs, let u(x, y) be a function of two variables and
suppose that it is analytic in the domain GeR? and assume
that the point (%, v,) in G. The function u(x, y) is then
represented as:

uxy=Y Ya, cox )y, 10

j=0i=0

To find the representation series for any power
of u(x, v) a condition as n Eq. 3 will be applied:

u” (%, ) = u™(x, YU, y) (1)

If the series expansion of u™(x, y) is written as:

W =Y Ya xx)' vy (12

j=0i=10

Then, using the relation in Eq. 11, the coefficients of
u® expressed as:

(m) = E 2 a(m v ag)pms) (13)

s=0p=10

A representation for any derivative of u with respect
to x or y for any order and for any power of them can be
found by generalization the equivalent relation for ODEs.
Some examples will be used to explamn the method.

RESULTS AND DISCUSSION

Numerical examples: To illustrate the techmque and
exactness of the approximate solution, we now investigate
some examples of nonlinear PDEs in detail.

Example 1: The nonlinear diffusion equation is
considered:
9 qum (14)
u, =— "
t&( 2
where, m is a positive integer. Let m = 2, then the
equation is:
ad 3 du 2 3 (1 5)
1, -— (' —)uu,, +2un;
ox
with mitial condition:
ux, 0)= xth (16)

e

where, ¢>0 and h is an arbitrary constant. The exact
solution of the given equation 1s Chun ef al. (2009):

x+h

24fe-t

u(x,t)y=

Assume the solution u (x, t) as a power series in x and t:

i iau x't! (7

1=0;=0

u(x,t)=

By differentiating both sides of Eq. 17 with respect to
x, we will get the expansion series of u, and u:

N
MB

2 (itag,, x't’ (18)

1

=¥ T EnE Xt (9

The power series of o’, u'u,, and wy,® are obtained by
applying Eq. 11 and the above series:
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s=0t=10

u’ = i i {2 E a, a (i-t)(j- s)} Xt (20)

L E E (-p+1)A-pt2)a, .y

=t 21

1l
=)

1l
=

Substitute these series into Eq. 11 to obtain the
recurrence relation:

i

1
2 2 Aiip) G

u? 0p=0

i=
U 3P
2 2 (H1)(P'H1)a(m)sa(p-m)(q-s)

x't

s=0t=10

(22)

B, Gy :J {2 2(1 PHD—p+2ag 0y

q=0p=10
i P
{ZEItZU om0 (- 5)J+2Z Za -1) (-0) (23)

q=0p=0

i D
{ 2 2 (t + 1)(p —t+ 1) a(t+1)s a(p—H—l) (q-5) }}

s=0t=0

Where:
h ...
— if 1=0
2Je
a ., = Lifi—l
R N
0 oW

By applying the recurrence relations Eq. 23 for
several values of 1 and j. The polynomial approximation for
u(x, t) is obtained:

ht 3ht2 . sht?
372 502 Fiz

J_ 4 6¢ 32¢ (24)
x 3t X 5tx

2J‘ 403f2 C512 3207f2

=
m

Table 1 demonstrates the difference between the
approximate solution and the exact one for several values
of xandtwhenh=1and ¢ =10.

Example 2: Consider the nonlinear system:

u,+tvu,+tu-1=20 (25)

v,tuv, -v-1=10

Subject to the initial conditions u (x, 0) =e*, v(x, 0) =
e” The exact solution is u(x, t) = &, v(x, t) = &~
(Bataineh et al., 2008). In order to solve the given system
using the power series method, the solutions u and v are
considered as:

N .
E a; xt (26)

i

Mz

uix,ty=

=)

i-

v (x,t) = i ibu x't! (27)

10 -0

We use the representation of the solutions 1n
Eq. 26 and 27 to write the power series expansion of
the products vu, and uv,. Then, we obtain the recursion
(Eq. 28):

1 ] i
E"1,]'*-1 = Tl {BI,J,D-aLJJ’_E E (S+1) bl-s,]-t a’s+1,tj|

-] t=0:=10
(28)
bl,]+1 - _] |: -b JrEU ED(S+1)815” s+1t:|
t=0s=
(29)
Where:
1if i=j=0
81_]0 _{ J
-~ 0 0.W
After solving Eq. 28 and 29 fori=0,..,3 and
1=0, ..., 3 we obtain the polynomials:
S t'x tx x°
axt)=l-t+———+x—-txX+———+——
2 2 6 2
o K k" X Px % 6K
2 4 12 6 6 12 36
(30)
And:
b tt t'x tx x°
TED=1l+t+————x-tx————+"—+
2 6 2 6 2
2 4 12 6 6 12 36
(31

The difference between approximate solutions and
the exact solutions for Eq. 25 are shown in Table 2 and 3.
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Table 1: The difference between exact and approximate solutions for example 1

t [u(o, t)-u(0, t)| [u (0.2, t)-H(0.2, t)| [u(0.4, t)-u(0.4, t)| [u(®.6, t)-(0.6, t)] [u(©.8, t)-1(0.8, t)] lud, ty-ud, t)|
0 0 0 0 0 0 0

0.2 7041070 8.45x107° 9.86x107° 1.13%107% 1.27x107% 1.41x107%
0.4 1.15=1077 1.38x1077 1.61=1077 1.84x1077 2.07=107" 2.30x1077
0.6 5.92:1077 7.11:1077 8.29x1077 9.48x107" 1.07%107¢ 1.18x107¢
0.8 1.91=107% 2.29%107° 2.67%107° 3.05=107° 3.44=107° 3.82x107°
1.0 4.75%107¢ 5.70x107° 6.65x107° 7.60x<107° 8.56x107° 9.50x10-6

Table 2: The difference between exact and approximate solutions of u (x, t) for example 2

t u(0, £)-i(0, £} lu (02, 06(0.2, 0] [u(©.4, §-i(0.4, £) u(0.6, -6(0.6, t) u(0.8, £)-0(0.8, t) ucL, 6L, o)
0 0 261107 3.42x1077 8.00<107° 4.62x107 2.26x10~*
0.2 2.48%107" 8.04x107* 2765107 4.91%107 3.78x107 1.85%107%
0.4 3.10x10~7 3.76<107" 2.32x1077 346107 3.03x10° 1.51x10~
0.6 5.16x107¢ £31x107 7.52%107¢ 512107 1.39%107 1.10x107
0.8 3.8x107 4.62x107 5.62x107 6.62x10°° 634107 1.04x107
1.0 1.8x10~* 2210~ 2.63x10~* 3.19%10~ 3.75x10~ 3.95x10~*

Table 3: The difference between exact and approximate solutions of v (x, t) for example 2

t [u(®, H-i(0, 0 [u €0.2, ©)-1€0.2, t)] [u(0.4, H-(0.4, 0 [u(©.6, )-(0.6, t)| [u(©.8, -(0.8, t)| lud, B-udl, t)
0 0 2.48x107° 3.10x1077 5.16x107¢ 3.78x107% 1.76x107*
0.2 2.60x107% 8.94x1010 3.76x1077 6311078 4.62x107° 2.15x107
0.4 3.42x1077 2.76x1077 2.32x1077 7.52x1076 5.62x107% 2.63x1074
0.6 6.00x1078 4.91x1078 3.46x107° 6.12x1078 6.62x107° 3.19x107
0.8 4.61x107° 3.78x1077 3.03x1077 1.38x107° 6.34x107% 3.75x1074
1.0 2.26%107* 1.85%107* 1.51x107* 1.10x107* 1.05x107* 3.95x107*
CONCLUSION Chun, C., H. Jafari and Y.I. Kim, 2009. Numerical method

The method has been successfully applied directly to
some examples of nonlinear PDEs without using
linearization, perturbation or restrictive assumptions. It
provides the solution in terms of convergent series with
easily computable components and the results have
shown remarkable performance. The efficiency of this
method has been demonstrated by solving nonlinear
PDEs and systems of nonlinear PDEs. A comparison of
this method with the exact solutions were performed and
presented.
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