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Abstract: In this study, iterative methods particularly the Alternating Group Explicit (AGE) iterative method is
used to solve system of linear equations generated from the discretization of Two-Dimensional Fuzzy Poisson
problems (2DFP). The formulation and implementation of the AGE methoed 1s also presented. Then numerical
experiments are carried out on to two problems to verify the effectiveness of the methods. The results show
that the AGE method is superior compared to GS method in terms of number of iterations, execution time and

Hausdorff distance.
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INTRODUCTION

Fuzzy Boundary Value Problems (FBVPs) can be
approached by two types. The first approach, addresses
problems in which the boundary values are fuzzy where
the solution 1s still in fuzzy function. Then, the second
approach is based on generating the fuzzy solution
from the crisp solution (Gasilov ef al., 2011). Numerical
methods well be used in obtain their approximate solution
to solve these problems. For clarity, consider the two
Dimensional Fuzzy Poisson Equation (2DFPE) as:

+——=f(x,
aXZ ayZ ( y)
U(x,0)=5 (x
” & 0<x<a, (1)
U(x,a)=g,(x

where  f(x,y), & (x), §,(x). &(y) and g(y) were fuzzy
numbers or fuzzy functions.

Second-order, central fimte difference scheme will be
applied to discretize the 2DFPE (Eq. 1) into linear
systems, numerically based on the Seikkala derivative
(Seikkala, 1987). In this study, the generated linear
systems will be solved iteratively by using AGE method

(Evans, 1987; Evans and Ahmad, 1996). Indeed, AGE
method 15 also analogous to Alternate Direction Implicit
(ADI) scheme which has been used extensively in solving
large scale computations. From previous studies, findings
of the studys related to the AGE iterative method and its
variants (Evans and Yousif, 198%; (Golbabai and
Arabshahi, 2010, Mohanty et al., 2003; Mohanty and
Talwar, 2012; Sukon, 1996; Yousit and Evans, 1987) have
shown that the efficiency of the family of AGE methods
has been widely used to solve the non-fuzzy problems.
Due to the efficiency of the methods, this study extends
the application of AGE iterative method in solving
fuzzy problems. Since, the fuzzy linear systems will be
constructed, the iterative method becomes the natural
option to get a fuzzy numerical solution of the problem.

Finite difference approximation equations: Consequently,
let £ and v be two fuzzy subset of real number. They are
characterized by a membership function evaluated at
t, written %(t) and §{t), respectively as a number in (0, 1).
Fuzzy numbers can be identified via. the membership
function. Th ¢- cut of £and ¥ which ¢ is denote as a
crisp number can be written as #(w) and F{«) in
{xI%(t)za} and {y|5(t)za} for O<w<l. Since, they are
always closed and bounded nterval, the ¢ cut of fuzzy
numbers can be written as £(e)=l=e.x@)] and §w =Ly, 7]
for all ¢ [Eq. 2]. Suppose &x and ©% be parametric
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form of fuzzy function x and y, respectively, now for
arbitrary positive integer n and m subdivided the
mterval ast<b whereasx, =a+ih(1=0,1, 2, ... n)andy, =
atl(1=0,1,2, ..., m) foriand j, respectively and define the
step size h and 1 by h = b-a/n and h = b-a/m.

Dencte the value of x and y as &% and ¥ at
the representative point t(i=0,1,2, . n)and t{i=0,1, 2,
..m) by x andy, at ®= and ©¥- respectively. Then by
using second-order central fimite difference scheme Eq. 1,
can be developed as:

gu| Ui, 20,4 U, 2
ax’ 5 - b’
Ful U2 40, 3)
ox? b
i
And:
azg - Ul,rl -2&+U1,J+1 (4)
2 - 2
ay" | | h
Ful U 20 +U 5)

ay2 h2

By using Eq. 2 and 3 lower boundary for Eq. 1 will be
reduced to:

Ul*l,] _2&+U1+1,J

2
h (6)
-2U, +U

h2 =i j

Ul,]*l 1,1+1

Then, applying Eq. 4 and 5 into upper boundary
for Eq. 1, it can be shown:

U1—1,j_2Ui,j+Ui+l,] +

h* (7)

Fori=1,2, ., nl and j =1, 2, .., m-1. Since,
both Eq 6 and 7 have the same form in terms of
equation, except, based on the mterval of the g-cuts, the
differences identified only in the upper and lower
boundary thus, it can be rewritten as:

Ui—l,] _2U1,j + U1+1,j ¥

2
h (®)
U,,,-2U, +U,

1,1-1

h? Li

Equation & can be represented in matrix form as
follows:

AU=F )
MATERIALS AND METHODS

Alternating group explicit iterative method: Consider
class of methods mentioned by Evans (1997) which 1s
based on the splitting of the matrix A into the sum of its
constituent symmetric and positive definite matrices as
follows:

A=G,+G,+G,+G, (10)
Where:
G, and G, = The forward and backward differences in the
x-plane

3, and G, = The similar difference m y-plane

In which diag(G,) = diag(G,) =1/4 diag(A). By
reordering the points column-wise along y-direction,
G,and G, literally have the same structure as G, and G,
respectively. Then, Eq. 10 becomes:

(G, +G,+G,+G,)U=F (11)

Thus, the explicit form of AGE method can be
written as:

ul) = (51+G,)" [213+(r11+G1-2A)] (12

=) = (rrea, ) {Gz U g[“i]} (13)

vl - (L1+G,)" {G3 U 4, U[“;]} (14)
And:
Ut (514G, )" {Ggl Ut g U{‘”%]} (15)

From Eq. 12-15, therefore, the implementation
of the families of AGE methods is presented in
Algorithm 1.

Algorithm 1 (Families of AGE methods):

i. Initialize U0 and and 210"
ii. First sweep compute

rel

T:I[ i) (e, [21_"+ (51+G, -ZA)}

iii. 8econd sweep compute

I_J(“%] = (51+G,)" {Gz Uty U[“*lﬁj}
iv. Third sweep computer

e P |
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v. Fourth sweep compute

Ut = (g1, ) {Ga Ul 4, 1}[***3]}

e _ gy

vi. Convergence test. If the convergence criterion, i.e., |

satisfied go to Step (vii). Otherwise go back to Step (ii).
Vii. Display approximate solutions.

RESULTS AND DISCUSSION

Numerical experiments: Two problems of 2DFPE are
considered to verify the effectiveness of AGE iterative
method via. the corresponding second-order central finite
difference approximation equation. During implementation
the proposed iterative methods, the value of the tolerance
error, considered, s=10"" .

Problem 1 (Allahviranloo, 2002):

2*U 2*U -
g oY) (o) =,

0<x<2, 0<y<l1

(16)
where,  g[o]-[k(e)k(e)|-[0.7540250,1.25-0250] With the
boundary conditior® U(0,y)=0, U(2,y)=2ke’, 0<y=1and
T(x,0)= kx, U(x1)= kex, 0=x=2 . The exact solution for:

2 2
9 H(X,y;ot) + % H(X,y;ot) =k(a)xe” a7
Y

o 2
And:
U 9*U -
o (x,y;ot)-s-y(x,y;a):k(a)xey (18)
Are:
Q(x,y;a) zli(a)xey (19)
And:
G(X,y‘,OL) :E(a)xey (20)
respectively.

Problem 2 (Abdullah, 1991):

9'U 9'0
axz (X’y)+ ayz

(%) :E(XZJF}’Z)G(XY), Dex<2, O<y<l

(21)
where, k[a]=[k(a)k(a)|=[0.75+0.250,125025¢] With the
boundary conditions T(o,5)=0, U(z,y)=2ke’, 0=y<1 and
T(x,0)= kx, f}(x,1):12ex, 0<x<2. The exact solution for:

2

o' (x,y,0)+ %yg(x,y;a) :lg(cx)(x2+y2 )e(xy) (22)

ax?

Ic

2

And:

2 2
P R B GOy B
Are:
U{x,y;a) :lg(a)e(xy) (24)
And:
G(X,Y;O{) :E(a)e(xy) (25)

respectively based on these two problems, numerical
results for GS and AGE methods have been recorded in
Table 1-5. For the purpose of observations on the
feasibility of the proposed methods, three parameters
were observed such as number of iterations, execution
time (in seconds) and Hausdorff distance (as mention in
definition 1).

Table 1: Comparison of three parameters between GS and AGE methods at

=000

Number of iterations
Problem 1 Problem 2

n Gs AGE GS AGE
32 3883 1108 3965 1129
a4 14366 4100 14708 4190
128 52818 15150 54220 15521
236 192760 55682 198438 57183
512 697178 2053164 T20036 209210
Execution time
32 0.49000 0.29000 0.52000 0.31000
a4 2.77000 1.70000 2.79000 1.74000
128 29.4000 20.1400 30.4900 20.6700
236 370.330 285.280 381.060 292.670
512 5686.37 5462 .46 643078 5682.34
Hausdorf distance
32 6.8381e-06  6.8446e-06 38277e-06  3.8320e-06
a4 1.6773e-06 1.7042e-06 93734e-07  9.546de-07
128 2.9278e-07  3.9027e-07 1.6698e-07  2.168%-07
236 6.0545e-07  1.1845e-07 6.3925e-07  1.5156e-07
512 2.6413e-06  6.8798e-07 2.6498e-06  6.9641e-07

Table 2: Comparison of three parameters between GS and AGE methods at
o =025
Number of iterations

Problem 1 Problem 2
n GS AGE GS AGE
32 3886 1108 3967 1130
64 14379 4104 14720 4194
128 52866 15163 54268 15533
236 192951 55733 198629 57234
512 697942 203347 720800 209411
Execution time
32 0.53000 0.31000 0.50000 0.30000
64 3.76000 1.68000 3.66000 1.72000
128 30.2900 20.1900 30.0700 20.6100
236 371.680 285.040 381.730 293.580
512 5642.22 5468.61 6733.05 5700.13
Hausdor{ distance
32 6.4958e-06 6.5023e-06 3.6360e-06 3.6403e-06
64 1.5916e-06 1.6185e-06 8.8939¢-07 9.0663e-07
128 2.7217e-07 3.6893e-07 1.5594e-07 2.0491e-07
236 6.0056e-07 1.1383e-07 6.3716e-07 1.4960e-07
512 2.6401 e-06 6.8671e-07 2.6192e-06 6.9595e-07
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Table 3: Comparison of three parameters between GS and AGE methods at
=050

No. of iterations

Problem 1 Problem 2
n GS AGE GS AGE
32 3888 1109 3970 1131
64 14387 4106 14728 4196
128 52899 15172 54301 15542
256 193084 55768 198762 57269
512 698475 203507 721333 209552
Execution time
32 0.49000 0.29000 0.56000 0.30000
64 2.64000 1.66000 2.86000 1.71000
128 29,9800 20.0900 30.1600 20.6700
256 370,700 286.240 382,090 293.380
512 5540.28 5467.58 6310.45 5695.10
Hausdorf distance
32 6.1534e-06 6.159%-06 3. 4444e-06 3.4486e-06
64 1.505%-06 1.5328e-06 8.4140e-07 8.5858e-07
128 2.5162e-07 3.4751e-07 1.4490e-07 1.9298e-07
256 5.9573e-07 1.0932e-07 6.3513e-07 1.4771e-07
512 2.6388e-06 6.8557e-07 2.6486e-06 6.9541e-07

Table 4: Comparison of three parameters between GS and AGE methods at
o =075

No. of iterations

Problem 1 Problem 2
n GS AGE G8 AGE
32 3889 1109 3971 1131
64 14392 4107 14734 4197
128 52920 15177 54320 15547
256 193163 55788 198841 57290
512 698789 203390 721646 209635
Execution time
32 0.54000 0.29000 0.56000 0.34000
64 2.86000 1.65000 2.76000 1.73000
128 29,9800 20.0300 30.4100 20.6800
256 370.910 285.900 381.160 293,400
512 5577.81 5463.76 6600.82 5699.42
Hausdorf distance
32 5.8111e-06 5.8176e-06 3.2527e-06 3.256%-06
64 1.4202e-06 1.4471e-06 7.9347e-07 8.1049e-07
128 2.3132e-07 3.2613e-07 1.3402e-07 1.8107e-07
256 5.9092e-07 1.0483e-07 4.3310e-07 1.4583e-07
512 2.6376e-06 6.8433e-07 2.6482e-06 6.9488e-07

Table 5: Comparison of three parameters between GS and AGE methods at
o =1.00

No. of iterations

Problem 1 Problem 2
n G8 AGE Gs AGE
32 3890 1110 3972 1130
64 14394 4108 14736 4198
128 52926 15178 54328 15550
256 193188 55794 198866 57294
512 698892 203618 T21750 209662
Execution time
32 0.53000 0.29000 0.56000 0.310000
64 2.79000 1.68000 2.95000 1.75000
128 30.1000 20.0700 30.7400 20.7400
256 370.350 285.630 380.580 293.320
512 5568.18 5472.62 5818.36 5694.80

Table 5: Continue
No. of iterations

Problem 1 Problem 2

n GS AGE GS AGE
Hausdorf distance

32 5.4688e-06 5.4753e-06 3.061 1e-06 3.0653e-06
64 1.3345e-06 1.361 5e-06 7.4552e-07 7.6248e-07
128 2.1107e-07 3.0471e-07 1.2322e-07 1.691 9e-07
236 5.8616e-07 1.0031e-07 6.3112e-07 1.439%e-07
512 2.6364e-06 6.8306e-07 2.6477e-06 6.9442e-07

Definition 1 (Nutanong et af., 2011): Given two mimimum
bounding rectangles P and Q a lower bound of the
Hausdorff distance from the elements confined by P to the
elements confined by Q 1s defined as:

HausDistLB(P,Q) = Max{MinDist(fm,Q) s FacesOf(P)}

CONCLUSION

In this study, the AGE method is used to solve linear
systems arises from the discretization of two-point FBVPs
using the second-order central fimte difference scheme.
The results showed that AGE method is more superior in
terms of the number of iterations, execution time and
Hausdorff distance compared to the GS method. Since,
AGE is also known as the two stage iterative method
which 1s suitable for parallel computation in solving
the associated matrix equation it can be considered as
a main advantage because this method has groups of
independent  task which can be implemented
simultaneously. It 13 hoped, that the capability of the
proposed method will be helpful for the further
investigation in solving any multi-dimensional fuzzy
partial differential equations (Farajzadeh et al., 2010).
Also, other family of AGE methods can be used as linear
solvers in solving the same problem. Basically the results
of this study, can be classified as one of full-sweep
iteration. Apart from the concept of the full-sweep
iteration, further investigation of half-sweep (Abdullah,
1991, Dahalan et al, 2013, Dahalan et ai, 2014,
Dahalan et al., 2015; Muthuvalu and Sulaiman, 2008;
Sulaiman et al., 2004) and quarter-sweep (Dahalan and
Sulaimarn, 2015) (Mohanthy et al., 2013) (Muthuvalu and
Sulaiman, 2011; Othman and Abdullah, 2000;
Sulaiman et al., 2009) iterations can also be considered in
order to speed up the convergence rate of the standard
proposed iterative methods.
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