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Abstract: Currently one of the major challenges in wireless networks is the optimal use of the radio spectrum
as most researcher agree that the licensed frequency band 1s not in use most of the time. There has been a large
amount of research in this area that converges mn the use of Cognitive Radio (CR) as an essential parameter so
that the use of the available licensed spectrum is possible (by secondary users) well above the usage values
that are currently detected; thus allowing the opportunistic use of the channel in the absence of Primary Users
(PU). This study presents the results found when estimating or predicting the future use of a spectral
transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series
prediction method (which the PU represents) used is ANFIS (Adaptive Newro Fuzzy Inference System). The
results obtained were compared to those delivered by the RNA (Artificial Neural Networlk) algorithm. The
results show better performance m the characterization (modeling and prediction) with the ANFIS methodology.
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INTRODUCTION

The use of licensed bands by Secondary Users (SUs)
is conditioned to the inactivity of the channels or their
non-use by PUs; since there is no guarantee that spectral
frequency will be available throughout the transmission
period of an SU, it is important to take into account how
often PUs appear. Using the learning ability of cognitive
radio, the history of spectrum usage is used to predict the
future spectrumn profile (Masonta et af., 2013) through the
characterization or modeling of PU and SU activity,
mn this way 1t 15 possible to admimster and manage the
appropriate spectrum, seeking to avoid collisions with the
PUs m the decision making stage m CR. From the above,
the future estimation of channel occupancy gives an
indication to the SUs of the moments in which it will be
possible to make use of the spectrum to transmit; a metric
considered as sensitive and that will depend on how
accurate the prediction model 1s based on usage history.
In the characterization of the primaries (Mishra et al.,
2012) concludes that a significant number of existing
approaches have a very high computational cost, making
their implementation practically unviable in those nodes
that base their useful life in the use of batteries
(within rural areas) an approach that suggests that despite
being an issue addressed by several researchers, several
development challenges remain in the sense that it is
necessary to propose methodologies that reduce
computational cost and increase the success percentage

Based on Neural Poisson Hidden
statistics networks (ON/OFF) markov data

Fig. 1: Main paradigms used in PU activity

when estimating future ones. The most representative

techmques that study the dynamics of PUs are
summarized n Fig. 1.
From Fig. 1, it can be observed that 1t 18

important to generate proposals that study the operation
of methodologies such as ANFIS, SVMs (Support Vector
Machime) among others in order to determine their
modeling and prediction capacity which presents a PU in
the transmission band of a wireless network. This premise
validates the importance of studying the ANFIS Model in
CR.

Literature review: Rehmani ef al. (2013) a strategy for
intelligent channel selection in multi-hop CR (SURF) 18
proposed, its operating principle benefits
continuous-time Markov chains to classify the available

from

spectrum under the assumption of low PU activity and
high number of cogmitive nodes, causing each SU to
dynamically migrate to the best chammel A cycle is
included in the algorithm to learn from those estimates
where the band selection was wrong, applying that
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learning in future predictions. Tt is concluded that if the
level of PU activity is lugh, the solution proposed 1s not
adequate, a logical result since there is a deficiency of free
spectral voids; when 1t 1s intermittent, the selection
strategy  works well by improving the system’s
performance through the control of collisions with PUs.
An analytical study for a hybrid network based on the
TEEE 802.11 standard is addressed by Khabazian et al.
(2012). In order to preserve PU priority, it was assumed
that SUs dispute their use when it is free of any primary
activity over a period of time. They use queuing theory
and model the variability of licensed nodes. In this case
each PU 13 structured as a discrete queuing system M/G/1
with an arrival rate of A packets/sec and service of 1/E [D]
with E[D] as the medium access delay of PUs in the
presence of Sus and its value shows the average of the
time interval between the time of arrival of a packet to the
main queue of a PU and the mstant of time in which that
PU accesses the channel to perform the transmission. The
value of this variable associated with the queuing delay
directly impinges on the average delay of packets E[D/]
shown in Eq. 1:

E[D,]=E [D]+LD2] (1
2(1-AE[D])
Where:
E[D] = The denotes second moment of time it takes a
PU = Access the medium
AE [D] = The load on the queue

The analysis of the simulations argues that the
performance of the primary network with a given packet
arrival rate may be affected depending on the size of the
useful packet load and the number of neighboring SU
nodes.

The statistical approach based on binary time series
by Yarkan and Arslan (2007) discloses the deterministic
and non-deterministic behavior of channel use to predict
future PU occupancy. The complexity of the analysis and
the amount of storage memory required (of data) reduce
it by assummg a sequence of binary states thus
sinplifying spectrum occupancy as well (“17 1s empty, “07
is used). From the tests performed the short range
prediction factor 1s quite satisfactory for the first two tests
performed, however in the third sample the success of the
prediction degrades strongly because the model 15 not
updated and the data behavior is non-deterministic; a
problem that could theoretically be solved by increasing
its order at the expense of an exponential increase of
the parameters to generate the prediction. From the

deterministic perspective, the estimation is quite robust
for the first four time slots according to the tests
performed for three different bands in a GSM network
during a capture with a duration of 17 msec from which 30
observations were obtained per channel once the model
was applied.

Mishra et al (2012) proposes a spectral
decision-making system based on the quality of service
for CR networks which guarantees the proper treatment of
the packets by locating a band capable of satisfying the
requirements of the SU where these can generate traffic
with multiple priorities, dividing the flows to be processed
in 4 different types with 8 available spectral bands also
taking into account as system variables the availability of
the channel, the fluctuation of the primary user with the
assumption that the bandwidth is the same m each case
(a condition that could be an advantage if the system is
configured to operate like this). The availability of the
channel 15 modeled as an ON/OFF source depending on
the presence or absence of the PU (with a known behavior
pattern) with a Markov two-state chain. Parameters a and
B, represent the transition probability of the PU in the
channel given an ON state (presence) to an OFF state
(absence) and vice versa. The probability of availability of
avoidis given by Eq. 2:

Yie 2

n-_-

oo tB

Given that: C' = {1...C}. From the analysis of results it

1s found that when the number of channels mcreases, the

appearance of false alarms decreases making the system
work more properly.

The predictor based on the Static Neighbor Graph
(SNG) (Xing et al., 2013) is designed to predict future
locations of the PUs according to previous mformation
collected from the mobility topology of the same licensed
users. Initially, we construct a graph oriented to represent
PU mobality listory. To do this when a secondary user
observes the passage of a PU from location i to j a
directed edge (1, j) 1s added to the graph and the edge
weight is set for w; = 1 if the edge (4, j) is not on the graph
or 1 1s added to the weight of the edge w; = w;+1 1if the
edge (1, 1) 1s in the graph. Once the graph 1s obtained, a
normalization procedure is performed on the edge weights
such that Vi, % w, = 1. Then, the mobility of the PUs 1s
predicted as follows: If the current location of the UP is i
and the cogmtive user finds the place 1 on the graph, he
returns a list (j, w;) for all edges (1, j) and then predicts the
future locationof PU as j = a, max w; An interesting
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predictor of SNG-based PU is that additional valuable
information can be obtained from the network
structure.

Ghosh et al. (2010) a statistical model of time variation
for spectrum occupancy is proposed using real frequency
measurements. Using statistical characteristics extracted
from real RF measurements, first and second order
parameters are used mn a statistical spectrum occupancy
standard based on a combination of different density
probability functions (Masonta et al., 2013).

Although, most Cognitive Radio (CR) investigations
focus on frequency bands above the upper lunit of High
Frequencies (HF) (Melian ef al., 2013) CR principles can
also be applied to communications in the high bandwidth
frequencies (HF) to make better use of the spectrum,
based on regulatory and propegation restrictions. In this
research, users are considered inherited from other
frequencies such as the PUs that transmit without
resorting to any intelligent procedure and the HFDVL
architecture (voice and data transport in HF using 3 kHz
bandwidths) is used as SUs. The objective of this study
is to improve spectrum efficiency by detecting the future
presence of PUs in chamnels (to avoid collisions) while
transmitting information from SUs on different channels
using the HFD VL transceiver. For this purpose a dynamic
algorithm that monitors the activity of PUs (Wang ef al.,
2011) 1s developed by estimating the short-term future
predictions of the dwell time using the Hidden Markov
Model (HMM). The system is trained for real values
obtained in the amateur radio band on the 14 MH=z
frequency in three different situations: available channels,
partially available and unavailable. The validation of
results was based on predicting the activity in a channel
during the next minute, reaching an average prediction
error equal to 10.3% when the previous knowledge of the
activity i the same 13 one minute long, bemng able to
diminish its value to 5.8% when the previous analysis time
is 8 min.

In CRNs, a static model such as that shown by
Song and Zhang (2010) (where they use only a cycle for
activity sensing and inactivity of PUs) fails to capture the
dynamics of PUs behavior in the temporal domain.
Researcher increase the number of measurements (to two
cycles) to accurately estimate PU activity and thus to be
able to improve the performance of the detection
algorithms of free bands. The proposed method switches
between two options; the first so-called fine sensing
(which 15 used when the SU enters the primary network
for the first time and therefore ignores the operation of the
PU) and the second, normal sensing which based on a
maximum likelihood estimator, learn to know the periods
of PU activity and mactivity (in fine detection).

Layer 4
consequences

Layer 2 Layer 3

Layer_5

Layer 1
Premises

Fig. 2: Architecture proposed for the characterization of
PUs with ANFIS

These occupancy patterns are used in normal
detection where the Mean Scuare Error value (MSE) of
ON-OFF periods 13 contimiously momitored to ensure a
sufficient accurate estimate. When its activity changes
significantly (that 1s the value of the MSE 1s lugher than
a threshold), it forces the fine sensing to be executed
again. The results in the simulation show that the method
follows the dynamics of PU activity even at high
fluctuation levels for PU.

From the state of the art, it can be concluded that
most articles base the representation (modeling and
prediction) of the activity of primary users in
methodologies that do not possess the dynamic
adaptation properties required by cognitive radio to make
it a really intelligent and autoconfigurable system,
rendering them unfeasible in a real implementation
enviromment.

Adaptive neuronal inference system architecture: The
architecture proposed for the development of the model
is an adaptive network type in which its parameters are
adjusted by a backpropagation algorithm, based on a set
of data (input/output) that will allow the system to learn;
due to faster training, the first-order systems for the
diffuse Sugeno type are used. The system under
consideration has three inputs x, y and z with a single
output f. Therefore for a model of this type, a set of
common rules are the fuzzy if-then rules represented
Eq 3:

Rulel:ifx=A andy =B, then f, = px+qytr
Rule 2: if x = A, and y =B,, then f, = p,x+q,y+T, (3)
Rule 3:if x = A; and y = B,, then f, =p,x+q.y+r,

The system has a five-layer structure where the
square nodes represent adaptive nodes and the circular
fixed nodes as shown in Fig. 2.
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Fig. 3: Sampling power levels in the Wi-Fi band (Pedraza et af., 2014)

El - I = Awverage (A1:C1)
A E C D E
1 -95,593338) -96,763824 -104,888016 -99,081726
2 -88,8B80859 -93,108475 -93,444763 -91,8113657
3 -93,393761| -94,169952 -105,450821 -97,6715113
4 | -105,492752 -104,074631 -93,503723 -101,023702
5 -90,379135| -95,767059 -97,903625 -94, 683273
6 | -109,086472 -94,597824 -106,234016 -103,306104
7 -89,1763 -95,69886 -90,530212 -91,8017907
8 -95,15271 -95,850258 -94, 270752 -95,09124
9 | -103,740204 -92,53614 -99,580093 -98,6188123
10 -99,216263 -95,329651| -99,0093506 -97,87938067
11 -98,256218| -97,161346 -100,749309 -98, 7224577
12 | -102,272583 -104,281631 -101,080544 -102,544919
13 -96,024277| -97,767433 -104,629845 -99,4738517
14 -7, 75737 -100,156021 -91,52858 -96,480057

Fig. 4: Average Wi-Fi sample setting

PU signal processing: The measurements obtained
by Pedraza et al. (2014) (Fig. 3) in the Wi-Fi
band (2.4-2.48 GHz) were used for the evaluation of the
neurofuzzy model of prediction of PU channel use
(Garcia et al., 2016) where for the measurement ranges
they took records of absolute power in multiple
frequencies of a radio-electric channel in dBm obtained in
mntervals of 290 msec.

For practical purposes in the development of the
tests, a total of 600 records have been used of which 300
were used in the training of the ANFIS network
(modeling) and the remaining 300 were used to test the
functioning of the newc-adaptive system in the
prediction of PU chamnel usage. A representative sample
of the data sequence used can be observed in Fig. 4 in
which the “columns” refer to the power levels in a chamnel

while the “rows” indicate how many power samples were
taken (every 290 msec). Because the data representing a
Wifi chammel consists of 40 columns (a condition that was
established for simplicity) it was decided to average them
in order to obtain a single level of power and to make
good use of the data (Fig. 4).

Once the samples are obtained they are normalized to
minimize the variation between the data for a range
between 0 and 1, considering the maximum value and the
minimum value that were obtained from all the records
taken by the devices of Fig. 3. Fially, it ends with the
treatment of the (chaotic) PU signal, applying a filtering in
order to eliminate periodic trends that are considered as
noise, obtaining a signal to estimate the modeling and
prediction as shown in Fig. 5.
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Fig. 5: Display of normalization and takagi-sugeno model
MATERIALS AND METHODS

Training and prediction of the pu characterization model
with anfis: Tn the training of the neuro-diffuse model,
three previous samples (v (k-1), y (k-2) and y (k-3)) of the
signal to be predicted (v (k)) are used thus there are three
mput umverses (y (k-1), y (k-2) and y (k-3)) in which each
has two sigmoid sets (mfl and mf2) and an output
universe (u(k)) with 6 linear output sets (mfl, mf2, mf3,
mf4, mf5 and mf6) as can be in Fig. 6.

To start the training of the network, a FIS structure is
initially required which is responsible for specifying the
system parameters for learning the ANFIS algorithm. In
(Fig. 7), the first block complies with this through the
generation of a fuzzy inference system that initializes the
parameters of the membership function, generating a
system with a single output using a grid partition in the
data. Tf a value is not assigned for the number of
membership functions the fuzzy matrix type takes a value
that will be linear.

Then the algorithm establishes the dimensions that
represent the information; For this case, the FIS data
parameter assumes that the last column represents the
response that must be obtained when the remaining
columns are presented and the first one uses it to obtain

DOy

Y(k-1)

2 Anfis
m f(u)
mtﬁ (Sugeno)

Y(k-2)

mfS /

Y(k-3)

Fig. 6: ANFIS system based on the takagi-sugone model

the length of each column (proving that they have the
same dimension thus preventing possible errors).
Subsequently, a matrix of ones is created and is multiplied
by the number of membership functions then checks that
the type of output requested is a valid option then takes
the matrix generated by the membership functions and
performs a multiplication between the elements that it has
in each row thus obtaining the number of rules to be
generated.

Then, assigns the data to the FIS that is generated,
taking into account that: the method to add “AND” logic
rules is obtained by the product of the inputs; the method
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to add “OR” logic rules is generated with the sum of the
inputs; the defuzzification method (which converts the
results of fuzzy rules into numbers) is obtained using
backpropagation.

Finally, the rules were built according to the type of
entry (gaussmf, sigmf, etc.) keepmg them in a list; it
thenm minimizes the error value between the output
desired and output delivered by the newo fuzzy

Creation of the function for
learning the ANFIS model

[ Obtain last data column |

v

[ Output ==last colum

v

[ Generate fuzzy rules

Apply defuzzification ]

v

Create fuzzy rule list

v

Determine and minimize error ]

Fig. 7: Block diagram of the training and prediction model
with ANFIS

)
@

model. Part of the algorithm simulated in matlab for the
characterization of a primary user can be observed in

alorithm.

Algoritham (Pseudocode of the training stage of the

ANFIS: Train ANFIS with different input variables):
fprintf (*nTrain %d ANFIS models, each with 3 input selected from 10
candidates.../n/n’,...
anfis n);
model =1;
for d=1: length (group 1),
for e = d+1: length (group 2),
for k= 1: length (group 3),
in 1 =deblank (input_narme (groupl (d), ));
in 2 =deblank (input_narme (group 2 (e), :));
in 3 = deblank (input_name (group 3 (f), :));
index ¢(model, :) = [group 1(d) group 2 (e) group 3¢0];
trn_data = data(1: trn_data n [group 1(d) group 2 (e)
group 3(D) size (dat, 2)]);
chk data = data(tm_data n+1:tm_data n+300,
[group 1(d) group 2 (e) group 3(f) size (dat, 2)]);
in_danilo = dals (trn_data (:, 1: end), *sugeno®, 150);
[~,t err, ~, ~, c_err] =...
anfis (trn_data, in_danilo, ...
[epoch_nnan ss ss_dec_rate ss_inc_rate], ...
[0000], chk_data, 1);
trm_error (model) = min (t_err);
chk_emror (model) =min {c_err);
fprint £ CANFIS model = % d: % %s %s°, model, in 1, in 2, in 3);
fprint £ (*--= trn = %%, 41, °, tm error (model);

RESULTS AND DISCUSSION

The sequence for training (modeling) and testing
(estimation of accuracy in prediction) of the ANFTS model
is shown in Fig. 8 Once simulating the neuro fuzzy
system, the results of modeling and prediction shown
i Fig. 9 were obtained. The results were validated
comparing the neurofuzzy system with the response
delivered by an artificial neural network; the results are
presented in Fig. 10.
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Fig. 8: Trace data of 300 values for training and prediction: a) Traming data and b) Checking data
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Fig. 9 Modeling and prediction with ANFIS: a) Training
anfis prediction with RMSE = 0.10799
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Fig. 10: Modeling and prediction with RNA: a) Training data RNS modeling with RMSE = 0.071257 and b) Checking data

RNA prediction with RMSE = 0.10663

Table 1: RMSE values for ANFIS and RNA

Parameter RMSE-ANFIS RMSE-RNA
Modeling 0.68902 0.071257
Prediction 0.10799 0.106630

Table 1 shows a comparison between the two
structures by evaluating the Mean Square Error (MSE)
parameter of Eq. 4 which shows a better performance in
the modeling and prediction of the amival of PU to the
channel for ANFIS than for RNA:

MSE = (%Jz(y -9, (4

CONCLUSION
The great advantage of ANFIS neurofuzzy inference
systems 1s their adaptability which makes them an

excellent candidate to be used as a predictor in CRN
while RNA 18 a structure with self-learmng capability
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composed of multiple layers, applicable to the solution of
problems that are not linearly separable which has been
tested as an estimator of chammel usage in CRN. The
results of both methodologies, in principle, show
relatively similar results (Fig. 9 and 10); although from the
prediction variable, ANFIS is able to be more successful
in monitorng sudden changes in the signal This
appreciation 1s clearly evident from the results obtained in
the Result Mean Square Error (RMSE). A critical variable
when using systems based on artificial intelligence is the
processing time of the data m this sense a t = 4.5 min for
RINA was obtained and a t = 4.2 min for ANFIS; values
that can become raised in CRN. Nevertheless, ANFIS i1s
susceptible to improvement due to its flexibility and the
ability to use simple network topologies for sequences of
chaotic mput data in addition to offering the possibility of
using clustering by extracting a set of rules that model the
data.
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