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Abstract: A high-performance ciphering algorithm is presented. The proposed method combines old school
ciphering (Reaction Automata Direct Graph (RADG)) with chaotic systems to obtain higher level of security.
Chaotic sequences are highly sensitive to any changes in their parameters, adding a higher level of security

to the proposed approach, called CRADG.
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INTRODUCTION

Cryptography 13 an important method to keep
personal data secret in order to avoid prohibited
access. Lately the internet becomes popular and cipher
technology becomes essential to everyone (Marton et al.,
2012). In recent years there has been significant research
efforts to understand chaotic systems and apply their
properties towards improving important systems,
especially security systems. Chaos properties such
as sensitivity to nitial conditions and other chaos
generation parameters, similarity of chaotic sequences
to  random  sequences, broadband  spectrum,
quasirandomness and ergodicity. Chaos has started
many research directions in various computer-relatedand
information the oretic fields where cryptography
became one of the most significant applications.
While the classical cryptography isbased on number
theory and discrete mathematics the emerging
chaos-based cryptography is based on complex
dynamics of deterministic nonlinear systems (Kwok and
Tang, 2007).

This study presents a novel keyless security scheme
which is based on Reaction Automata Direct Graph
(RADG) a new trend in security that has recently merged
and proved to be efficient. However, one of the
weaknesses of this technique is the fixed graph design.
The problem discussed in this study is changing the
graph from fixed to dynamic using chaotic system,
decreasing the decryption time yet adding more security
level. It 1s shown that by using both chaos and RADG
technologies better results are obtamed with more
effective ciphering.

RADG: RADG (Reaction Automata Direct Graph) is a
combination of automata direct graph and reaction states,
RADG doesn’t need key exchange or agreement between
users. RADG can be represented by a sextuple as

Fig. 1: Transition design

(Q; R, %, W, I, T) such that Q stands for a set
of standard states, R stands for a set of reaction
states, X stands for a set of input data, ¥ stands for a set
of output transitions, T stands for a set (which is subset
of Q called jump states) and T represent transition
function. Hach state has A values. RADG ciphering
depends on relation between states. On the other hand,
the design of RADG depends on m; n; k and A where n =
|Q|; m = |R| and A representing the number of values in
each state. Encryption begins in Q set of states taking
each value of the state depending on the transitions and
the message whenit gets to a jump state it moves
randomly taking wvalues from the R state and going
back to the Q set usingthe corresponding transition. The
example below helps understanding RADG design
(Albermany and Safda, 2014).

Example: Ifn=4; k=1, m =1 and 4 = 2 number of value
in each state then the transition design is in Fig. 1.
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Chaos: Chaos theory is a branch of mathematics that
studies and analyzes the behavior of continucus or
discrete dynamical systems that are characterized as
being highly sensitive to any changes in the systeminitial
conditions often referred to as the butterfly effect.

It is worth noting that a very small change in
mitial conditions (including rounding errorsin digital
imnplementation of chaos systems) can give a highly
different output, making these systems very suitable for
security applications where the long-termprediction of
their behavior would be intimidating for the attacker
(Lau and Hussain, 2005).

This complex behavior would be obtained even if
these systems are deterministic where their future
output values are dependent of the initial conditions
(Kellert, 1993). In other words, the deterministic nature
of these systems are not predictable (Kellert, 1993;
Werndl, 2009).

This kind of behavior 1s known as determimstic chaos
or simply chaos. Edward Lorenz summarized the theory of
chaos as follows (Danforth, 2013): “Chaos when the
present determines the future but the approximate present
does not approximately determinethe future”.

Behavior of logistic equation: This map has been
presented in 1976 study by the biologist May (1976) as a
discrete-time demographic model which is similar in
behaviorto the logistic equation proposed by Pierre
FranoisVerhulst. The logistic map is given by the
following non-linear first-order difference equation:
X, =i, (1x,)

where the system output represented by the sequence
{x,} belongs to the interval (0, 1). Biologically, that
represents the ratio of existing population to the maximum
possible population. The values of mterest for the
parameter 1 are those enclosed inside the mterval (0, 4).

Behavior is dependent on r

For the range 0<r<1: In this range, we have, f(x) = x
(1x) = x giving a single fixed point x = 0. Now
f(0) = r=x = 0 is attracting. Tt can also be shown that it is
globally attracting in the sense that f (x;)=0 as n=1 for
any x, is in (0, 1).

Proof:

£ <o ([x))=[FE)] = |f )| *]|f )]
Now substituting |f (x)| with |f (x)]<r(|x]):
=<r(|x))* || =r" (|x])

£ ()<t ()—F e[ £ 60| < (|x]),

=f" (x)<1" (x)=1" (x)=0 as n=e

When 1<r<3: In this range, solving f (x) = x will give rise
to 2 fixed points as follows:

x = 0 (unstable, repellor) and x = 1-(1/r) (attractor)

) = mx (1-%) = -

f(x)=r-2rx

f(0) =r>1=x = 0 1s repelling:

U ({7

-r+2|

21 <1

= x = 1-1/r 1s attracting. In this case, we don’t have any
periodic points. Tt can be shown that:

f(x,) 1-1/r as ne=for any x, = (0,1)
Forany f(x,)= (0,1)

Proof:

f'(x)| = ‘r—2r|<1

=2r %—x <1 (common factor)

= l—x <l=2r

2
dividing both sides (2r):
= x-l <1=12r
2

reversing because of the absloute sign:

:71—<X—1/2<1/2r
2r

removing the absloute:

1
=—-1= 2r<x<l—+l
2 2

r 2
11
XE[;‘;’%*%J
1
ot 1= %2 (2-1—2r, %+ %r)
< 4,

f(x)=<1=|x ——
Forany x, € {1— L+ !

2

1 1
2 2r’ 2 2r
fn(xn)ilf%asnﬂoo
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Fig. 2: Preimage of interval; a) logistic map, p = 2.5 and b) Spiderweb for logistic map

Tt can be shown on MATLAB that all the preimages
of this interval are (0.1) (Fig. 2). Such situations can be
reached by choosing the parameter r to be in the range
(Kwok and Tang, 2007). The attractor is defined as the
destination set towards which some initial values
converge. Based on this definition, the fixed point is the
attractor in the above case.

r>3: When r approaches 3, the convergence of the
chaotic sequence to the fixed point:

X = (r-1)/r

becomes very slow while aperiodic pomt of period 2 will
take place when 3<r<1+J6 (approximately 3.45). Here
both of the fixed points are repelling. However, periodic
points will appear. This fact 1s proved below by solving
the equation f, (x) = x which gives 4 roots:

_ o 1_1 r+1i,/(r—3)(r+l)

X =4,
r 2r

The first 2 of these roots represent the repelling fixed
points while the other two roots represent two-periodic
points. System stability:

f, (xg) = x)f (x;) where x; = (x;)
When:

B r+li,/(r—3)(r+1)
’ 2r
g’ (x,) = 4+2r-1’

Therefore, the 2-cycle is attracting for:

| 4+21-1 [< i1, 3<r<1++/6 = 3.449 .

Fig. 3: MATLAB simulation

when it is repelling. Tt is clear that the sequence
will converge to a periodic orbit whose period is 2.
According to the above definition, the periodic orbit with
period 2 becomes an attractor. Increasing the value of the
system parameter r will double the period of the periodic
orbit to become 4, 8, 16, ... This change of the orbit
structure as a result of the change of the system
parameter is called bifurcation, shown below using
MATLAB simulation (Fig. 3).

MATERIALS AND METHODS

The proposed CRADG: The proposed method describes
the use of RADG and combines it with the logistic
function, i.e., instead of using static transitions between
states we get the states from the logistic map equation.
Although, we can use any one dimensional chaotic
equation such as: tentmap, sinusoidal map, elliptical map.
Since, each time the equation is executed it gives the
value of next stateexcept for the initial seed in the
equation which is agreed on by the 2 users (Fig. 4)
(Table 1-3).
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Where mi is sub message Functi
— unction
M=m, m, .., m

Xt =rx, (1-x,)

m m;,
. Snld Sne\A
1 bit b 3
key vV, Vi
sold N
Adress Ky Y
S A=2 . next state, " i\ —
Vl
V'J
V
Cipher text
Cipher text=V,, V,, ... (e, el )
Fig. 4: Flow chart
Table 1: Key for transition Flowchart
Notation Notation detail .
o Algorithm
Key Key of logistic map T
Seed First number of the sequence Key for transition:
State,, Current state number Step 1. 3.8<key=4
INQ State in Q set Step 2. 0<seed<] and x (0) = seed
INR State in R set
Index Index of the while loop Encryption:
Message ., The length of message Step 3. State,, X, =1, (1-x,)
Step 4. Status—INg
Table 2: The cipher Step 5. While (h]dt?x<messagelangm)
State Cipher if 0 Cipherif1 ~ Step 6 If state,, = jump
0 2 30 Step 7. State,random (0, Ryrgs)
1 25 7 Steps.
2 16 14 Clipher [index] = R [state, ] get vahie [message]
3 ) 15 Step 9. Else state,, = x,
4 10 4 Step 10.
5 Jump Jump Cipher [index] = ( [state,,] get value [message]
6 0 3 Step 11. End if’
7 9 1 Step 12. End while
8 6 24
9 Jump Jump Decryption:
10 13 17 Step 13. State, ~Xessag gt
11 3 1 Step 14. While (index_0)
12 28 12 Step 15. If status INQ
13 26 23 Step 16,
14 31 19 decipher [index] = Q [state,.]: get value [message]
15 21 29 Step 17. else
}g ;g ;8 decipher [index] =R [state, ]: get value [message]
Step 18. End if
Step 19. End while
Table 3: The incoming bit from the message
Index Message State,, Status Values
5 > . 0 > RESULTS AND DISCUSSION
1 1 3 InQ 15
§ ? i %28 i Example: Assuming the 2 users agreed on the key = 3.8
4 0 11 R 5 and seed = 0.01 (Le., = x;) and the message 15 (010100)
3 0 1 InQ 25 given the Cipher table.
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Encryption: First we compute the state number using the
first number of the chaotic sequence which is 0.01, since
the state number is an integer and enclosed between Oand
the maximum number (n) n the Q set we multiply the
output by n and take the floor of the new value wlich
gives O (this ensure that we don’t have any number going
out of range). We cross reference the state with the
incoming bit from the message in the cipher table bit by
bituntil the message ends, except for the jump state which
takes us to another set using random algorithm for
choosing the state number).

Decryption: Starting from the last cipher which is 25.
Taking the value of then converting into an mteger
value (same process with encryption) we get the
state,, = 1 then cross reference it with the cipher table we
get that 25 came from 0. Repeating all the way until the
cipher 1s finished except for the jump states we have to
search in the R,

CONCLUSION

A new security approach has been proposed based
on the classical RADG and chaos theory. The proposed
method, called CRADG, out performs the original RADG
as follows; the system design is more dynamic including
more parameters. The time of decryption is less than
the original because we had to search the cipher
value 1n all states every ttme. Now we don’t the state
values are generated by the chaotic function. The security
is upgraded using the chaotic equation, since any tiny
changes in the initial condition will cause dramatic
changes in the future.
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