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Abstract: This research presents the history of research on the dynamic compatibility conditions on the oblique
shock wave that define correlation of values of gas-dynamic variables before discontinuity and immediately

after it. All relations can be used in numerical methods and applied for both compression shock waves and

1sentropic waves. The notion of shock waves polar 15 mtroduced. A research on their properties 1s conducted.

Particular attention 1s paid to special points on shock wave polars and their significance for the research of
shock wave properties and interference. Using step-by-step research worlks as an example, the researchers show

the history of solving issues on interference of oblique shock wave between each other and other

types of gas-dynamic discontinuities. A graphic method for solving problems of gas-dynamic discontinuity

mterference by using shock wave polars 15 provided.
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INTRODUCTION

The aim of the research is to reduce the relations on
oblique compression shock waves to umversal form that
can be used to 1sentropic waves; to research dependency
properties of gas-dynamic variables after discontinuity on
flow parameters before the discontinuity; to provide a
graphic method of solving problems of gas-dynamic
discontinuity interference and to provide necessary
graphical material for them.

Though, the gas-dynamic calculation method 1s
widespread in set of cases the problem of direct
compression shock calculation 1s still relevant, especially
if optimal solution is required.

In numerous available studies, the calculation
methods on the subject are usually presented mn a form
that 1s difficult to use for problems of supersomc flow
optimization and control.

This state is further complicated by the fact that
equations conjugated to shock calculation often have few
solution, computational quirks or simply cannot be solved
for a searched variable. In order to filter out the solutions
that correspond to physically realizable shock wave
configurations, additional reasoning 1s required.

On the other hand, there a mimmal set of the most
umportant shock characteristics for which problem can be

stated in a conventent form. Knowing special and termmal
shock parameters allows splitting solutions mto classes
easily.

In the current research, we present an approach that
allows one to easily solve 90% problem of practical
importance, related to calculation of singular oblique
compression shocks.

A detailed analysis of gas-dynamic waves (an
1sentropic rarefaction and compression wave) and
oblique compression shock waves that occur in plane
stationary flows of non-viscous gas has been publish by
Meyer (1908). In the same research, the parameters of an
oblique compression shock that generates during flow
over plane acute angle are described. In 1929-1937,
Busemann in series of his researches (Busemann and
Dynamics, 1931) laid a foundation for graphic solution
methods for problems about gas-dynamic discontinuity
interference by wusing shock wave polars that
conjugate compression oblique shock wave intensity
with flow’s tumn angle on shock wave. Since then, the
shock wave polars are named Busemamn polars after
him. Because of their look they are also called
heart-shaped curves. Another name is Isomach because
each shock polar is built at specific Mach number of flow.
The solution methods for discontinuity interference
problems by using shock polars were developed by
Courant and Friedrichs (1948).
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In 1940’s, the tasks of designing supersonic
aircraft instigated research of compression shock waves,
mnteraction between waves and discontimuties. During
first experiments involving shock wave pipe the
one-dimensional interactions were studied. The theory of
gas flow in shock wave pipe in one-dimensional setting
was proposed by Schardin (1932). In 1950°s at the
University of Toronto, a series of experimental and
theoretical research on interaction of one-dimensional
running waves and discontinuities were conducted:

* Refraction of runmng shock wave on contact
discontinuity (Bitondo et al, 1950; Bitondo and
Lobb 1950; Ford and Glass,1956)

* Interaction of overtaking shock waves (Gould, 1952)

+  Shock wave with rarefaction wave (Nicholl, 1951,
Gould, 1952) and rarefaction wave refraction
(Billington and Glass, 1951 ; Billington, 1955)

The theoretical results during these years were
humbler. Taub (1947)s research the shock wave’s
propagation through two initially at rest gases split by
division surface (contact discontimuity) was studied.
Molder (1960) developed an analytical theory of regular
interaction of counter directed waves. The two and
three-dimensional problems were solved exclusively by
numerical methods.

Uskov has made a major mvestment mto
development of stationary gas-dynamic discontinuity
theory. In modern form, its main statements were
formulated i 1980 (Uskov, 1980). In the collection of
scientific papers (Uskov, 1980; Kunchur et al., 2015), the
conditions of dynamic consistency for main problems of
discontinuity interference are presented. Results of the
relations on the shock and properties of various shock
wave structure analysis are presented in the monograph
(Adrianov et al., 1995).

These results were developed later for cases of
one-dimensional ruming waves and oblique shock waves
(Uskov et al., 2002, Omelchenko et al., 2002). In these
worls, convenient formulas for calculating parameters
of oblique compression shocks and oblique shock
wave are provided. Uskov (1980) and Adnanov et al.
(1995) conducted a research of heart-like curve
(shock-wave polar) which allowed to define their
important properties: presence of an envelope curve,
terminal angle of flow deflection on discontinuity, points
corresponding to discontinuities, after which Mach
numbers are equal to one. Tt can be noted that presence
of an envelope curve is important for problem of
aircraft aerodynamics (Uskov and Chernyshov, 2014a, b,
Kunchur ef al., 2013; Rahmani et ai., 2011; Raad et al.,

2016) because it corresponds to pressure extremes on the
sides of the body that flies with a set attack angle but
variable velocity.

The mathematical apparatus commonness of
non-stationary and two-dimensional problems about
shock waves and shocks mteraction that was
demonstrated in researches by Arkhipova and
Uskov (2012, 2013) allowed Chemyshov to solve a
set of practically important problems (Uskov and
Chernyshov, 2010, Tahmassebpour and Otaghvari, 2016;
Uskov and Chernyshov, 2014a, b, Uskov et al., 2002,
Seyedhosseirn ef al, 2016; Silmkov et al, 2014) of
interaction of oblique shock with Prandtl-Meyer
The next step was to research interaction
between shock wave and straight compression shock
wave (Omelchenko and Uskov, 2002; Uskov and
Mostovykh, 2008; Kunchur et al., 2015; Kunchur et al.,
2013; Rahmam et af., 2011) as well as oblique shock wave
(Omelchenko and Uskov, 2002) and non-stationary triple
configurations (Uskov and Mostovykh, 2008).

wave.

MATERIALS AND METHODS

An oblique compression shock wave mathematical
model: A shock wave model is a surface of the first-type
mathematical discontinuity by passing through which the
gas-dynamic variables get discontinued [f] = f,-f. In
general case, the shock wave can migrate i space. A
stationary wave is called standing or compression shock.
If there 1s an angle between a shock and oncoming flow,
then the shock is called oblique. A ratio between variables
f,and f, at different sides of gas-dynamic discontimunty 1s
called Dynamic Compatibility Conditions (DCC) on shock
wave.

Shock™s slope angle o, mtensity T which 1s assumed
to be a relation between pressure after shock wave P, and
pressure before shock wave P, and flow’s deviation angle
on shock wave [ (Fig. 1a) at set flow parameters before
compression shock wave (M,, P,, Py, p) have a mutual
unique dependency. Setting one of the parameters allows
for calculation of others. For instance, if flow’s turn angle
B 1s known (Fig. 1b), so when it is equal to wedge’s angle
that 1s flown over by a supersomc flow, then 1t 1s possible
to find an intensity and slope angle of a generating
oblique shock. If mtensity J is known for instance in case
of over-expanded jet where it equals to a ratio between
environmental pressure and pressure on supersonic
nozze’s cut (point A on Fig. 1¢) then it 1s possible to find
a shock’s slope angle and flow’s tum angle (jet’s
boundary) on shock. In cases when shock is a result of
other discontimntie’s mterference, its slope angle 1s
usually known. This slope angle can be used to find
intensity and flow’s turn angle.
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Fig. 1: A model of multi-piped PDE: parameters before
shock wave, parameters after shock wave, M:
Mach number; p: pressure, p,: total pressure; B

flow’s tum angle; s: slope angle of compression
shock

The compression shock wave’s parameters are
dependent on thermo-physical properties of gas
which are defined by a heat capacity ratic v = c/c,
(¢, is specific heat of gas in thermodynamic processes
occurring at constant pressure, ¢, specific heat of gas in
thermodynamic processes occurring at constant volume)
and by its molecular weight. Tn an ideal gas the heat
capacity ratio depends on number of freedom degrees
v = (j+2)/. If gas is monatomic, then it has 3 degrees of
freedom and heat capacity ratio is 5/3 or 1.666. If gas is
diatomic, then it has 5 degrees of freedom and heat
capacity ratio is 7/5 or 1.4. A triatomic gas has 6 degrees
of freedom and its heat capacity ratio is 8/6 or 1.33.
In additional, v = 1.1 for hydrocarbon fuel-air mixture,
v = 1.2 for hydrocarbon fuel-oxygen mixture, v = 1.251 for
combustion products. Tn real gas v depends on
temperature and pressure but it can be ignored at t=<600 K.

The DCC on stationary discontimuties 1s a zero
equation of the following shock parameters [f] = f,-f..

+  Flow of substance:
[pDn]:pzunZ —po, =0 1

*  Motion of impulse in projection on a normal to shock
wave’s surface:

[p+puﬂz0 2)

¢+ Motion of impulse in projection on a tangent to
shock waves surface:

[po.v.]=0 3)

+  FEnergies:
[i+vi/2]=0 4

Where:

v,and v, = The vector’s projection on discontinuity
plane

I = Enthalpy

P = Pressure

T = Temperature

Density are conjugated with an ideal gas law:

P const = 8340 (5)

pT i

which for an ideal gas (molecular weight and heat capacity
ratio are constant, enthalpy 1 1s proportional to T) can be
rewritten i a form:

P (6)

The flow’s compression rate in shock wave process 1s
usually characterized by the density ratio E = p,/p, which
when external heat supply is absent, are called an adiabat.
If E=>1, there is an expansion of the flow, if E<] the
compression. In isentropic process, the E is defined by
Laplace-Poisson adiabat (is entrop):

JEY =1 )

On compression shock wave by using Eq. 6 and
system (Eq. 2-3), the energy Eq. 4 can be written in a form
of Rankine-Hugoniot shock waves adiabat:

2z

i, i, = PuonasE) (8)
Zp

The rarefaction shock do not exist, 1.e., on shock
always E<l. Tnstead of y the following variable is
often used in equations:

e=(y=1)/(y+1) &)

which represents limit E at J-c. One can observe that on
the shock 1t 1s finite, 1.e., its density cannot increase
infimitely. The Rankine-Hugoniot adiabat can be written in
the form of dependency from shock wave mtensity:

E:1+EJ (10)
I+e

Let us introduce Mach number M = v/a, where a 1s a
local speed of sound:

a’ =vp/p (11)
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Fig. 2: A shock wave polar at v = 1.4, a match number
ranges from 2-5 with step 0.2

Then after simple transformation from Eq. 1-4 taking
into account Eq. 10 and 11 and equation for oblique
compression shock wave can be obtamed:

J.=(l+&M’sin’c-¢ (12)

and relation between flow’s turn angles P and shock wave
slope o

M’sin* o -1
clgo (13)
1 2 2 2.2
I_M —(M sin“ -1}
—&

tgh=

Equations 12 and 13 at set value M define a
polar In I-p (Fig. 2) in a parametric form with parameter o
which can vary in a rage from Mach angle ¢ = arc sin
(1/M) to 90°. It is noticeable that for each Mach number
there 1s & maximum mtensity:

I =(1+e)M* ¢ (14)

using which the angle B can be expressed in the form:

tof = T.-7 1-e)XI-1) (15)
I+ (J_ +e)—(1-e)I-1)

If shock wave is set by intensity T then to calculate
angle P then it 1s convenient to use (Eq. 15), if 1t 1s set by
turn angle o, then 1t 1s convenient to use ( Eq. 13).

If a shock is set by turn angle B, then it is easier to
solve Eq. 13 and 15 numerically, however there are cubic
equations relative to J that explicitly conjugate J-B. For
each [, there are two solutions for shock wave: with
supersomc flow after it and with subsomic one. The
relation between parameters on a shock can be written by
using intensity T and generalized adiabat E:

M = M’ —(1-ExJ+1) (16)
EJ

Relation of temperatures:

Ty a7
T

Relation of sound velocities:

N (18)

a
Total pressure recovery coefficient:

-1
I, :i:(EYJ)F (19)

01

Relation of densities:

P _1 (20)

If E in Eq. 16-20 is substituted with Laplace-Poisson
adiabat Eq. 7 we get relations for simple and
centered 1sentropic waves. If we substitute 1t with
Rankie-Hugoniot adiabat Eq. 10 then we get an equation
for shock waves. All variables after compression shock in
Eq. 16-20 monotonously change depending on shock
wave intensity J. Relations written in such form are true
for any type of waves: simple, shock wave and detonation
wave.

RESULTS AND DISCUSSION

Results of shock wave polars analysis: Figure 2-5 show
shock wave polars for different v at M = 2-5. A smaller
polar corresponds to a lower Mach number.

For each M and v there is a terminal angle P to which
an oblique shock can deviate the flow. Thus, a flow
picture showed on Fig. 1b is only possible at small wedge
angles B). If it exceeds some terminal value for given M
value of which 1s usually labeled as P, then a deviated
curved compression shock 1s generated (Fig. 6).

Intensity of the shock that 1s capable of turmning flow
to a maximum possible angle B, is expressed by Eq. 23:

oM _2+\/[M2 _2} F(1r2e)(MF 1) 2 B3
2 2

By introducing Eq. 23 mnto Eq. 15, we get a value of
flow tumn terminal angle. Thus, the shock polar J-B, can be
built (Fig. 7).
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Fig. 3: Shock wave polar at ¥ = 1.1, Mach number ranges
from 2-5 with step 0.2
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Fig. 4 Shock wave polar v = 1.25, Mach number ranges
from 2-5 with step 0.2
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Fig. 5. Shock wave polar at y = 1.67, Mach number ranges
from 2-5 with step 0.2

The point on heart-like curve corresponding to ]
divides a polar into two parts. A part located below that
point corresponds to attached shocks and the part above
corresponds to detached shocks. A terminal angle of

M>1

M>1

Fig. 6: Flow picture at wedge’s angle larger than p
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Fig. 7: Dependency for flow turn terminal angle J-p, and
envelope curve for a family of polars T .-J,

deviation [ increases with increases of M and at
Moo is equal 48.58° for v = 1.4 (Fig. 8). The slope
angle of shock wave 0, at which the limit angle of flow
deviation is reached [, is non-monotonously dependent
on Mach number.

Two shock wave polars that correspond to different
Mach numbers can pass trough an arbitrary point in
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Fig. 8: Dependency of terminal angle of deviation I, on
Mach number
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Fig. 9 An interjection of two shock (s, and s,) with same
direction, this results generation of a third

shock s,

coordinate plane {J; P}. This defines presence of
envelope shock wave polars that limit area on plane {I; B}
that 15 occupied by shock wave polars at 1<M<ee. In
parametrical form the equation for envelope curves looks
like thus:

Jo=M?-1 24

M -2

25
2J(1+Y;1M2](Y;1M2 —1] (2>

Since, on compression shocks the J>1 then from
Eq. 24 follows that shock wave polars at M<2" do not
have an envelope curve. Flow’s tun angle on a shock
wave with intensity J, is maximal, compared to all other
shock waves of same intensity that occur at other Mach
numbers. The envelope curve 1s shown on Fig. 7. Special
points e, s, 1, can be defined out on any polar, in addition
the inequality T,<J<T,is always true.

tgh, =

A
A A B
i B3
Y 4
B, /
A,
Az
B\
-
»
\4
A, A
\4 \ 4
B

Fig. 10: A solution on plane of polars for problem about
mterference of two compression shock waves
with same direction

By using graphs shown above, it is possible to solve
graphic problem about gas-dynamic discontinuity
interference. Let us demonstrate it by using example of
interjection of two-compression shock wave with same
direction (Fig. 9).

Aninterjection of two shock wave polars (Fig. 10) on
plane of shock polars corresponds to this case. On the
main peolar that corresponds to Mach number M the point
with coordinates A-p, 1s marked. From this pomt, a
second polar shoots that was built by Mach number
after the shock s,. The polars imtersect at a
point 1-3, coordinates of which define intensities A,, A,
and flow turn angles P,, P, for shocks s,, s;.

CONCLUSION

Universal formulas for calculating parameters after
the shock wave are presented. Formulas are written by
using a generalized adiabat and can be applied to simple
waves and detonation waves (with use of corresponding
equation for adiabat). These formulas allow calculating
shock parameters if at least one parameter after the shock
15 known.

If flow parameters before the shock and shock’s
intensity are known, then these equations allow
calculating all parameters after the shock. The results of
calculating dependencies of the most important shock
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characteristic on Mach number and specific heat
ration are presented in a convenient form for direct
use.
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