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Abstract: Digital elevation models are numerical data structures that represent spatial elevation distribution
over the land surface. Characterization of complex land topographic features traditionally has been performed
from the Triangular Irregular Network (TIN) interpolator developed by obeying a linear function while the
geometry of nature does not. This researches ought to evaluate the quality of the interpolation of distinct
non-linear algorithms through the cross-validation technique without ignoring the results of investigations that
have worked profoundly on the structure (TIN) during the last 30 years with good products, like the hybrid
structures between raster and break lines. The results revealed that the mmimum curvature mterpolator (SPL)
presented more fidelity of the surface’s topographic features. In the density distribution analysis of
interpolation errors, it was noted that these do not fit a gaussian distribution, rather a logistics distribution.
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INTRODUCTION

A Digital Elevation Model (DEM) is a data numerical
structure that represents the spatial distribution of a
terrain’s surface elevation (Felicisimo, 1994). The DEM
have been used broadly to model, analyze and show
phenomena related to topography and other surfaces
(A1 and L1, 2010). This type of land modeling and its
derived products have had an unquestioned leading role
in the geo-information environment in the last 25 years
with diverse puwrposes: Civil engineering and
infrastructure (Petrie and Kennie, 1987), planning in
management of natural resources (Fisher, 1996) modeling
of potential erosion processes (Mitasova et al, 1996
Ren et al., 2011) hydrologic modeling (Tana et al., 2007)
construction of multivariate predictive models of sites
of archeological potential (Vaughn and Crawford, 2009),
military engmmeering (Fleming ef af., 2009, Maio ef al,
2013), detection of geomorphological changes
(James et al, 2012) and climate mmpact studies
(Yan Hong et al., 2005; Marques et al., 2013).

Due to their structure, DEM permit storage and
analysis without having to research directly on the real
surface. The majority of GIS users donot keep m mind the
complexity of the phenomenon captured, obviating
fundamental elements, like break lmes, cutoff zones,
dimensional points and most importantly the interpolation
algorithm (Interpolation is the mechanism that permits
estimating elevation in zones where altimetry data has not

been captured. It 1s based on the principle of spatial
self-correlation which measures the degree of relation or
dependence between near and distant elevations in terms
of surface representation, the raster-type structure is
considered a functional surface, given that for any
position x, y only its z value 15 stored). Such 1s
selected more because of presentation i terms of its
visual appearance than because of reasons obeying
to the relation existing between the geometry of
the shape to be represented and its interpolator
(Peucker et al., 1977).

This complexity poses a challenge to automated
DEM techniques. The problem raised is that of wanting to
compare the earth’s skin that behaves as a continuous
function of infinite points and which in terms of modeling
will be defined incompletely-with another that comes from
discrete intervals (finite sampling points) that will be
generalized and consequently, cannot be determined
exactly. This generalization produces loss of
information which affects DEM error and that will be
transmitted to those derived products that can be
applied at local scale.

The principal motive for these differences (reality vs.
model) lies on the subjective assessment of the DEM this
model 15 constructed with spatial data that due to its
nature has errors intrinsic to the measurements and to its
propagation in the very model which should be treated
through geo-statistic procedures, quantifying their error
and seeking to dimension their uncertainty.
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According to Goodchild et al (1994) and
Hunter et al. (1995) calculation of the total error in DEM
cannot be quantified because it is mpossible to determine
the true wvalue for each topographic accident or
phenomenon represented in a set of geographic data.
Among the factors affecting DEM precision, the most
penetrating are sampling density, data distribution, the
mterpolation algorithm and fmally, its spatial resolution
(Ley, 1986, Li, 1990, Li et al, 2005; Fisher and Tate,
2006). A DEM’s precision may be defined as the mean of
the vertical errors of all potentially interpolated points.
This is achieved by calculating the Root-Mean-Square
Error (RMSE) that measures the dispersion of the
frequency distribution of the deviations between
original elevation data and DEM data (Ackermann, 1996;
Weng, 2002). Kumler (1994) developed a methodology to
study the cause of error in TIN structures through distinct
methods of selecting vertices (Gao, 1997) studied the
resolution and precision of the terrain’s representation
through a micro-scale regular grid (Rees, 2000) studied
the precision of DEM interpolated a thigh resolutions
and demonstrated that the simple bilinear mterpolation
produce results appropriate for DEM applications. T.i and
Zhu (2000) systematically discussed the DEM theory,
especially in the precision of the analysis of the models
and deduced their precision based on raster structures.
Kidner (2003) argued that the higher-order interpolation
techmques were always more precise than those
generated by the bilinear interpolation. Marquez (2004)
sustained that in the representation of suwrfaces,
information will always be imprecise due to the modeling’s
own simplification and hence, it 1s necessary to know and
control error uncertainty to determine the reliability of the
results obtained. Deng et al (2007) documented error
variation i a DEM m terms of the dependence of the
raster resolution m function of the analysis of the
landforms.

The aim of this study was to search for the relation
between the surface geometry modelled through a DEM
and the errors derived when using distinct interpolation
techniques in terms of the sensitivity of the terrain’s
variations. For this, six interpolation techniques were
applied (Tnverse Distance Weighted (IDW), Kriging
(KRG), Natural Neighbor (NN), Spline (SPL), Topo to
Raster (T2R) and Triangular Irregular Networks (TINY)
commonly used medeling of topographic surfaces
(Bater and Coops, 2009, Achilleos, 2011; Chen et al.,
2013). Interpolator performance was evaluated through an
ASTER GDEM image with 30 m spatial resolution, 541
rows by 541 columns which 1s approximately equivalent to
300.000 data items. The study area 1s located in Colombia
between the departments of Cauca and Narmo with
latitudes 01% and 02°N and longitudes 77° and 78°W,
covering nearly 263 km®. This zone is characterized for

having elevations from 500-1600 m.a.m.s.] with great
hydric wealth, besides housing xerophyte vegetation and
ecosystems rich m flora and fauna declared biosphere
reserve by UINESCO.

Besides the impact of the interpolation techniques on
the topographic modeling, this study suggests a strong
correlation between DEM error and the morphometric
parameters: slope and curvatures.

MATERIALS AND METHODS

Methodologidcal approach: The methodology proposed
derived from a technique known as crossed validation. Tt
has been used in environments of topographic modeling
by diverse researchers (Rees, 2000, Kidner, 2003,
Hancock and Hutchinson, 2003; Wise, 2011) the
technique consists in eliminating raster (temporarily)
elevation values, executing the interpolation algorithm
and estimating the values interpolated in the temporary
withdrawal positions. The error was calculated by
comparing the value estimated to the real value. This
simple but recursive, technique produces altimetry
information derived at distinct resolutions from a same
data source which will permit identifying the difference of
heights in a same position thus calculating the
interpolation error and its incidence on the representation
of topographic features through the interpolation
technicues evaluated. This approach sought to re-sample
a DEM from the ASTER sensor with 30 m spatial
resolution to a point such that the data re-sampled at low
density permit detecting the error trend in the models
interpolated. This study considered as reference DEM
information from the ASTER sensor. For this reason, the
results of the six interpolation models evaluated were
compared agamst said DEM by selecting a study area
with nearly 300,000 pomts which permitted the DEM to be
re-sampled by powers of three to conserve a reasonable
data set with which to interpolate.

The object of the methodology proposed was to
implement a model that permits determining which of the
algorithms evaluated best represents the surface without
compromising the altimetry quality of its representation.

The first step consisted in extracting the elevations
of the DEM from the ASTER sensor image. There
after the re-sampling procedure was applied to
determine new values of the raster’s cells in function of
the levels indicated in Table 1 (Kidner, 2003). Then, the

Table 1: Re-sampling errors and resolutions to create the DEM under

assessrment
Re-sampling Size of cell (m) No. of data
0 30%30 298.681
1 HO=AH0 T3.442
2 90=90) 32.761
3 120120 18.496
4 150x150 11.881
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Fig. 1: Methodological flow

mterpolation algorithms evaluated (IDW), (KRG), (NN)
(SPL), (T2R) and (TIN) were applied, obtaining for each
interpolator six results of the surface with the resolutions
indicated in Table 1. To obtain the residual elevation
value, altimetry information was extracted from the
surfaces interpolated at the original resolution (30x30)
which permitted calculating RMSE through the difference
between the original value and the interpolated value. A
multiple-factor. Analysis of Variance (ANOVA) was
performed, defining the RMSE as dependent variable and
the four re-sampling errors and the six interpolation
algorithms as independent variables (Fig. 1).

Interpolation techniques: This study selected
interpolation techniques with local neighborhood or
geo-statistic approaches, like Inverse Distance Weighted
(TDW), Kriging (KRG), Natural Neighbors (INN), Minimum
Curvature (SPL), Topo to Raster (T2R) and Triangular
Irregular Network (TIN). All these methods are based on
the principle of spatial self-correlation which measures
the degree of dependence between near and distant
elevations to predict the altimetry position of a point in a
position not measured. Tnverse Distance Weighted (TDW)
mterpolation 1s based on the assumption that the value of
a pomt not sampled can be approached as a weighted
mean of the close values sampled and that each point

Statistical analyst

Curvature

influences on the resulting surface up to a fimte distance
(Mitas and Mitasova, 1999). This techmque suggests that
the result predicted reduces its incidence on the
measurement that increases the separation between the
point to evaluate and the points from its environment
(Burrough et al., 2015) there by the points closest to the
centroid have higher weight in the calculation of
elevation (KRG) 1s a geo-statistic interpolation technique
that makes the prediction in function of three big
processes: structural calculation, calculation of the
regionalized variable and determination of the
residual error. This model seeks to mimmize the
variance of error and bring the error mean of the values
estimated to zero to avold overestimations or
underestimations.

The (NN) is an interpolation technique developed by
Sibson (1980) who indicates that the local natural regions
generated around each pomt are used to choose and
weigh the elevation of neighboring points. This
interpolation technique has the adventage of not
requiring any additional parameter and the results are
acceptable in sampling points with an irregular
distribution. However, according to Morillo et al
(2002) tlus eventual ease for the process may be an
inconvenience 1f we bear in mind the scarce number of
decision parameters used by the technique.
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According to Burrough et al. (2015), (SPL) adjusts the
function to a limited amount of points, generating a line
passing exactly through the original samples, ensuring
continuity in the junction of the distinct curves. To
interpolate surfaces, a special type of spline is used called
minimum cwvature which passes exactly through the
sampling pomnts, managing to adjust the terrain to the
shape of an elastic membrane. This method 1s
recommended when surface changes have slight
variations. However, it is not appropriate if many changes
exist in very short horizontal distances because the
estimated values may be exceeded, mtroducing anomalies
not found in the original surface (Lam, 1983).

The (T2R) is a finite iterative differential interpolation
technique. It has been optimized to achieve the
computational efficiency of local mterpolation methods,
like TDW without losing surface continuity of global
interpolation methods, like KRG and SPL. Tt is essentially
a fme discretization techmique m which roughness is
modified to allow the DEM adjustment process to follow
abrupt changes on the terrain, like water collector and
divider lines (Hutchinson, 2008).

The (TIN) is supported on the creation of a network
conformed by irregular adjacent triangles whose vertices
define the terrain adjusting to a plain at three near
non-collinear points (Zeiler, 1999). Several algorithms exist
to systematize the procedure which select the best way of
triangulating; the best known 1s that by Delaunay
supported on the Thiessen polygons (Ali and Mehrabian,
2009). This condition mentions that the circumradius of
each triangle of the network should not contain any vertex
from another triangle, mdicating that the points are
connected with their two nearest neighbors. This
mterpolator does not require the statistic continuity of the
surface to model; its results can be improved through the
integration of distinct types of structural lines that permit
the definition of break lines, collection or division of
water, slope demarcation or communication paths. In spite
of those benefits, there is also a big disadvantage: the
topographic features do not have linear simplicity; rather
they have a large amount of complex and dynamic
uregularities, like concave, convex or mixed curvatures
that are not described through surfaces produced with
linear interpolators.

Morphometric parameters: The complexity of the
topographic features can be described and characterized
through diverse numerical parameters derived from the
neighborhood or adjacency analysis in a DEM; among the
most used there are slope, curvature, roughness,
orientation and fractal dimension. This study will only
use the first two descriptors mentioned. The slope 1s

Slope in Y =tan g,

Slope in X =tan 0,

Fig. 2: Angular coefficient of trigonometric tangent
(Gorokhovich and Voustianmouk, 2006)
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Fig. 3: Geometric assighment of curvatures (Temme et al.,
2009)
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Table 2: Ranges of slope

Type of terrain Slope (%) Slope (%0)
Plain <2 <44
Undulated 2-6 4.4-13.3
Hill 6-25 13.3-55.6
Mountainous =25 =55.6

a topographic descriptor par excellence used widely in
topography and cartography (Wilson and Gallant, 2000)
define it as an indicator that measures the rate of change
of elevation in the most hill descending direction. To use
the slope in terms of the terrain description (Ley, 1986)
suggested the following ranges.

The curvature is the first derivate of the slope that is
the second derivate of the terrain. It describes the rate of
change of the relief in terms of convexity, concavity or flat
surface in each cell n the direction of the slope and its
transversal direction (Fig. 2). This study associated the
RMSE values of each cell to their corresponding slope
values indicated in Table 2 and curvature values shown
mn Fig. 3, to try to elucidate the relations existing between
the error generated by the different interpolators at
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distinct resolutions and the representation of the

topographic  features associated to morphometric

parameters.
RESULTS

Statistic modeling: Upon calculating the RMSE values
for each of the re-samplings through the methodology
posed, their statistics were obtained associated to the
mterpolators proposed (Table 3).

Given that the value of probability in ANOVA was
<0.01, a statistically significant relation exists among
RMSE, the re-sampling order and the interpolators at 99%
CI. To contrast the hypothesis of independent variables,
their regions of criterion were established by calculating
snedecor’s F statistic distribution in both cases, the
F ratio was found on the right side of the statistic,
confirming that the null hypothesis is in the rejection
Zone.

According to Fig. 4, the (SPL) algorithm 1s closest to
the lower RMSE, in contrast (IDW) had the highest error
n all the re-sampling errors. It was also possible to infer
that no statistically significant difference exists between
the (T2R) and (KRG) algorithms, given that the
uncertainty value in (KRG) was contained in the range of
error of the (T2R) interpolator. The same occurred
between (TIN) and (NN) interpolators, although these
presented lower altimetry deviations than the two
previous mterpolators.

Much of the ANOVA potential is the capacity to
estimate and test the effects of interaction between the
independent variables evaluated (re-sampling) (Fig. 4).
Much of the ANOVA potential is the capacity to estimate
and test the mteraction effects between the independent
variables assessed (re-sampling and interpolation
algorithms). This analysis tries to determine 1f mteraction
existed between both factors, representing the fact that
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Fig. 4 Box-cox graph and means for interpolation
algorithms, 95% Fisher 1.SD

the RMSE at a factor level were different for each level of
the other factor. Figure 5 shows that RMSE did not
provide a complete description of the data; usually, the
parallel lines indicate little or no interaction among the
factors. This means that as re-sampling resolution
increased so did its mean errors (as expected) likewise, it
is inferred that independent of the re-sampling resolution
all the interpolation algorithms had significant errors
among them. Due to this, the minimum cwvature
interpolator (SPL) was identified as that with the highest
fidelity of the surface’s topographic features. In all cases,
the interpolators had lower error as the raster resolution
became finer.

A map of absolute errors was created associated to
the scale of slopes show in Table 1. Tt was identified that
errors 1.28 m were found in zones classified as plain and
undulated and errors of greater magnitude (values
fluctuating between 1.28 and 3.48 m) were found in zones
of hill and mountainous slopes (Fig. 6 and 7). For the
curvatures, the error’s spatial pattern presented similar
behaviors: overestimation was produced in convex zones

Table 3: Summary of elevation error statistics

Re-sampling  Tnterp. RMSE Media Min. Max.
150%150 DwW 9.392 0.026 -68.991 51.174
T2R 4.147 -1.082 -154.970 43,586
KRG 8372 0.031 -60.125 42.275
TIN 7.743 0.067 -55.005 55.408
NN 7.452 0.032 -52.401 43.327
SPL 6.765 0.008 -48.161 41.413
120%120 DwW 7.564 0.003 -44.262 42.863
T2R 6.981 -0.941 -148.157 34.856
KRG 6.924 0.014 -39.541 38.873
TIN 6.151 0.023 -39.670 38.335
NN 5884 0.006 -35.384 37.631
SPL 5.263 -0.027 -38.651 39.192
90%90 DwW 5.667 0.023 -36.701 35.916
T2R 5.290 -0.675 -106.581 29.797
KRG 5354 0.032 -34.352 32.126
TIN 4.567 0.005 -46.501 43.503
NN 4.364 0.027 -32.891 31.005
SPL 3.822 0.016 -31.374 32.790
60%60 DwW 3.731 0.012 -20.364 25.466
T2R 4.140 -0.421 -138.674 29.988
KRG 3.648 0.027 -30.281 26.453
TIN 2.961 0.023 -30.505 29.004
NN 2.833 0.027 -27.754 29.253
SPL 2.552 0.011 -32.710 38.107
107 & 150x150
91 =& 120x120
8 —-90x90
E 7] % 60x60
% 67
5 ] ‘/o—f—’/’
44
34
2 T T

T T 1
SPL NN TIN KRG T2R IDW
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Fig. 5: Interaction among factors
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Fig. 6: Map of absolute errors for the SPL mterpolator at
30 m resolution
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Fig. 7: Interaction among error, curvatures and slopes.
SPL interpolator rsolution: 300 m

of tangential/vertical combination (X/X) hence, most
errors  occurred along the water dividing lines.
Underestimation {or errors with negative sign) oceurred in
concave areas of tangential/vertical combination (V/V).

Convex/concave (X/V) plain/plain (GE/GR) and
concave/convex (V/X) curvatures had errors close to zero
without showing sensitive changes among the four types
of slope. The opposite occurred with plain curvatures
(37X, V/V) given that as slopes increased so did their
erTor.

Fmally, to characterize the error, the magmtudes
from Table 3 were modelled under a gaussian
distribution. Chi-squared, Kolmogorov-Smirnov and
normality goodness of fit tests, performed in all cases,
showed they were significantly different from said
distribution with probability values for the test 0.05 which
rejects the idea that error behavior presents a normal
distribution. Differences m the distributions found
through the distinct methods interpolated were very slight

IDW 60
0.10 —— KRG 90
NN 120
0.8 —— SPL 150
> 006 i TIN 150
.g . |
o 0.04 A |
0.02 ’ |l
0 ’ = .;]'I..I: 1l '.:|“!l
60 40 20 0 20 40 60 80

Fig. 8: Density distribution of errors in mterpolators
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Fig. 9: Quantile-quantile graph for error produced in: a)
60x60 SPL re-sampling and b) 150x150 KRG
re-sampling

compared to those produced by the different re-sampling
errors as evidenced m Fig. 8 where the only visible
divergence visible between the graphs are the heights of
the curve peaks (Fig. 8).

However, an analysis of the quantile-quantile graphs
(Fig. 9) and the distribution statistics showed interesting
results. Interpretation of the results at first sight, suggests
anormal distribution but detailed observation shows long
tails and high kurtosis values which keeps the data from
adjusting to a gaussian distribution mstead of a logistic
distribution. Figure 9 shows two quantile quantile
graphs, revealing the non-extreme normality: when
re-sampling 1s low and extreme or closest to the normal:
when re-sampling 1s high. When modeling analysis, the
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Fig. 10: T2R algorithm errors: a) frequency distributions
and b) quantile-quantile graph

(T2R) interpolator had atypical data with respect to
the other mterpolation algorithms evaluated. For all
re-sampling errors, this algorithm in its distribution
elevation error, always assume it 1s spatially self
correlated, this is a reasonable presumption given that the
terrain tends to have the slightvariations in short
distances so that neighboring pixels probably have similar
height values and because the mterpolation in itself has
the probability of producing similar values for the closest
points. Kurtosis values (Table 4) indicated that the
distributions became much less leptokurtic as the
re-sampling level increased that 1s it tried to normalize as
data density diminished. As a special case within this
presented a much longer tail toward the left side than
toward the right which indicates that the model
overestimates in most cases. Toward the right side that 1s
overestimation errors behaved as data quite close to the
normal distribution (Fig. 10).

Finally, seeking to explore the error’s spatial self
correlation, moran’s mdex was calculated from the four
orthogonal neighbors of each pixel (Table 5). Values for
the highest re-sampling levels were quite lugh which
indicates strong degree of spatial self-correlation in the
error pattern.

Fidelity of the interpolation techniques in representing
land surface: Representation of topographic features of
a surface through a DEM will always contemplate
absolute errors given that it is incapable of totally

Table 4: Standardized Kurtosis for the distribution of elevation errors

Re-sampling Interpolator Kurtosis
150x150 IDW 179.1440
T2R 1067.1930
KRG 125.3130
TIN 218.8660
NN 155.2210
SPL 146.9430
120x120 IDW 145.1930
T2R 2759.8060
KRG 103.9070
TIN 181.9210
NN 131.3130
SPL 141.1620
90x90 IDW 115.1640
T2R 1460.4730
KRG 91.4350
TIN 157.1420
NN 122.1150
SPL 159.3810
60x60 IDW 99.0371
T2R 8180.6370
KRG 92.2430
TIN 159.0120
NN 122.1220
SPL 258.6430
Table 5: Spatial self-correlation. Moran’s I
Re-sampling Tnterpolator Moran®sT
150%150 DW 0.953
TIR 0.954
KRG 0.966
TIN 0.971
NN 0.965
SPL 0.953
120%120 IDW 0.912
T2R 0.913
KRG 0.951
TIN 0.923
NN 0.941
SPL 0.940
90%90 IDW 0.721
T2R 0.743
KRG 0.691
TIN 0.712
NN 0.651
SPL 0.672
60x60 IDW 0.608
T2R 0.397
KRG 0.482
TIN 0.396
NN 0.415
SPL 0.372

representing the surface of the terrain in its true form. This
model will never be defined absolutely for this, it would
need to contain much nformation, like the geometry of the
surface sought to represent which is inconceivable given
that 1t 1s a continuous surface with infimite variations. In
any case, these errors caused by modeling also tend to
being self-correlated and the combination of these factors
lead to moran’s index values approaching their maximum
value: 1. However, in the lowest re-sampling errors, when
the DEM was generated from many points, the spatial
self-correlation in the error dimimshed and became
quite changing among the interpolation methods. This
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suggests that in some cases the simple calculation of a
single self-correlation error can truly be a dangerous
indicator because it may be judged that the error
does not have significant correspondence on the surface
studied.

The (KRG) interpolator produced acceptable
results when sufficient data was available to estimate the
semi-variogram because noise 1s treated as part of the
signal. In any case, interpolation precision through this
method was better than that presented by (IDW) although
upon modeling the surface it had a tendency to generate
concentric patterns around the original points, making it
the study’s iterpolator with greatest RMSE. This is
argued through the weight given to the particular
variation of the value of a sampling point over those
around it.

The (TIN) interpolator produced an unsmoothed
surface which caused discontinuous slopes on the edges
of the triangulation. This algorithm only considers the
spatial distribution of the original points and not the
shape of the surface generated and accommodates the
creation of triangles that alter the geometry of the
expected surface. This 1s because it 15 a linear interpolator
and the forms of the land surface, generally do not
correspond to linear models; however (TTIN) has been the
mterpolator par excellence to represent topographic forms,
given that it is considered a local and exact method based
on Delaunay’s triangulation. According to the relation
between contrasts no significant difference existed
between (TIN) and (NN) which although operating
similarly to the IDW) method uses a local adjustment that
reduces the effect of concentric circles, given its
smoothing parameter in addition to bearing in mind the
anisotropy granting different weights along the search
axes.

The (T2R) was characterized for having excessive
smoothing of the surface as well as omitting a great deal
of its detail wlich led to loss of planimetric precision in
the disposition of the forms that do not correspond to
drainage networlks. The behavior of underestimations with
this interpolator was because the algorithm has as
principal function continuity in the hydrologic networlk
and it is precisely in zones of greater depression where
the error had its maximum magnitudes.

The (SPL) technique adjusted to the surface through
the original points, preserving surface tendency and
making the best fit m all degrees of variability of the
topographic gradient.

DISCUSSION

The DEM’s altimetry representation error, caused by
the mterpolators evaluated, showed a strong link with the
slope; it increased as its degree of variability increased

which coincides with results reported by Tahmassebpour
(2016) who after analyzing distinct interpolation models in
zones of different relief concluded that the altimetry
error increased as the topographic gradient increased.
According to the results obtained, the pattern of elevation
errors showed a clear bond between the geometry of the
terrain, slope and cwrvature, exposing under estimation
for concave curvatures and overestimation for convex
curvatures. Tt was also proven that a high spatial self
correlation index exists as the raster resolution became
less dense. The differences of the RMSE achieved by the
interpolators evaluated indicated that (SPT.) has the most
stable variation pattern in all the re-sampling levels
(Fig. 5). It retained topographic features that none of the
other interpolators could maintain. This coincided with
findings by who holds that methods based on spline best
fit the sampling points to the representation of the surface
they model given that they expose higher self-correlation
than those algorithms that base their estimation in
function of the closeness of pomts. This also agrees
with the results obtained by the (IDW) interpolator
that displayed the greatest errors induced by the
interpolation.

The convex/concave (X/V) plain/plain (GE/GR) and
concave/convex (V/X) cwrvatures indicated low level
error sensitivity which implies that in studies of flow
acceleration, erosion, deposit and transit of materials this
descriptor has a high degree of fidelity without being
affected by the topographic gradient.

In the DEM field, it is usual to assume that errors in
spatial data are normally distributed (Li et al., 2005;
Goovaerts, 1997). Many researchers, Temme et al. (2009),
Teffrey et al. (2001) and Atafar et al. (2013) have modelled
their propagation under Monte Carlo simulations where
the error is assumed under a gaussian behavior there in
deducing the characteristics of its propagation. However,
findings from this study (Table 4) report that errors have
high kurtosis values, implying greater variance caused by
infrequent deviations in the long tails of the distribution,
notoriously removing it from its normal behavior.

In many cases, the value of data re-sampled at
150=150 was not far from the zero value of a gaussian
distribution this suggests that with diminished number of
re-sampling pomts, the behavior of the errors tends to
normalize. According to Chiles and Delfiner (2012) in spite
of the wide use of crossed validation to evaluate
interpolation algorithms we must be aware of their
limitations, especially we tend to overestimate the
interpolation error because prediction is calculated in
places where the data are available, hence, estimation of
the crossed validation can be altered by eliminating the
validated point. In practice, these problems are inevitable
but upon mereasing the number of input points, there 1s
lesser impact on the result.
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CONCLUSION

In conclusion, from the arguments exposed, their
discussion and the literature cited, the DEM produced
have high degree of sensitivity to the interpolation
method used. The (SPL) technique functioned better in
comparison to the others evaluated here, having the best
fit mn the different degrees of sensitivity of the
topographic gradient. The low level of error sensitivity of
the combination of vertical/tangential curvatures: X/V,
GE/GR, V/X was not associated to increased errors of the
slope.

The election of the interpolation algorithm in the
construction of a DEM must be linked strongly to the final
use for which it 15 destined. Likewise, this selection
requires knowledge of the type of structure that stores the
altimetry information, the spatial resolution, topographic
descriptors of the area to be modelled, tolerance m the
magnitude of the final representation error and finally the
way to measure this error. Land surface 1s continuous and
a DEM is a set of discrete measures. The fidelity with
which a DEM models the true surface is related to
morphometric parameters, like slope and curvature,
besides the relative error of the DEM’s data source given
that there will always be details revealed in a finer scale
than those measured in the DEM’s original resolution.

To round off the idea of the affectation occurring,
selection of the interpolation algorithm m surface
representation shows that an ideal interpolation method
does not exist for all purposes. This 1s true because each
was created to estimate information that best characterizes
the phenomenon limited to assumptions inherent m: the
design of the algorithm, type of surface, its representation
structure and tolerance of expected errors.
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