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Abstract: Civil engineering structures in earthquake-prone regions should be designed to adopt the effect of
an earthquake. The dynamic behavior of a building when an earthquake 1s shaking, depends on the vanation
of the parameters of the building structure, namely the mass, stiffness and damping value. The purpose of this
study is to explore the effect of variations in the mass, the stiffness and the damping value to the dynamic
behavior of a five-story building. The modal analysis method 1s applied to this study to calculate the modal
parameters of the structure that are modal periods, modal damping ratios and modal participation factors. This
study shows that variations in the mass and stiffness of the building have an influence on the modal periods,
modal damping ratios and modal participation factors at various levels. The variation of damping values of
building stonies affects the modal damping ratios but does not affect the modal periods and modal participation

factors.
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INTRODUCTION

In earthquake-prone areas such as m most parts of
Indonesia, civil engineering structures have to be
designed to enable of accommodating the effect of an
earthquake. It 1s a wise attitude for inhabitants in the areas
to live in harmony with nature to reduce the risk of
earthquake disaster. The dynamic behavior of a building,
when an earthquake is shaking, depends on the variation
of the parameters of the building structure that is its mass,
stiffness and damping value. Various ways to study the
dynamic behavior of buildings can be found today, for
example using computer simulation (Arafat, 2015
Louzai and Abed, 2015, Nuwhidayatullah, 2016;
Poursha and Amini, 2015) or physical testing to full-scale
structures (Caetano and Cunha, 2004). Dynamics behavior
of the real building structures during earthquake shocks
using recorded data on the structures has also been
evaluated.

The purpose of this study 1s to determine the
effect of variations in the mass, stiffness and damping of
a five-story building to the dynamic behavior of the
building. Using the shear building model and applying
modal analysis method, modal parameters of the structure
can be calculated. Dynamic behavior of the building was
evaluated from the identified modal parameters, namely
modal periods, modal dampmg ratios and modal
participation factors.

MATERIALS AND METHODS

Building model and modal analysis: This study briefly
explains the model of the studied building along with its
structural parameters and the modal analysis method to
calculate the modal parameters.

Building model: Structural parameters of a five-story
building are mass (m) that i3 lumped to the floor, the
stiffness of story (k) and damping value of story (¢) that
can be illustrated in Fig. 1. As the model reference, the
standard model of the building has 100% values for all of
m, k and ¢, meamng that:

m =m, =mm; =0, =0, =1l (1)
¢, =C,=C,=C, =C, =C (2)
k =k, =k, ==k, =k, =k (3)
Where:
m = 29.01 kg.sec’’cm
¢ = 1422.72kg sec/cm
k = 284544.01kg/cm as the standard parameters that are
given the value of 100%

The variation of the structural parameter reduction
can be seen in Table 1. Variation of the proportions
of mass, stiffness and amping value of the studied
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Fig. 1: Structural model of the studied building as a shear
inverted pendulum

Tablel: The reduction of consecutive structural parameters in Fig, 1 to form
maodel variations with the reference of the mass of floor 3 as well as
the stitfhess and damping value of story 3

Table 4: The reduction of consecutive damping vahie (in%s) whereas all
mass and stiffhess are given 100%0 for m and k, respectively

Models cml0 cm03 5000 cp05 cpl0
I 80 90 100 110 120
o 90 95 100 105 110
C3 100 100 100 100 100
[ 110 105 100 95 90
c 120 110 100 90 30

Modal analysis: For the shear inverted pendulum model
or the shear building model as shown in Fig. 1, the general
equation of motion of the multi-story building can be
written as:

Mi+Cu+Ku=-MIi, )

Where:

M = Matrix of mass

C = Matrix of damping value
K = Matrix of stiffness

1 = Unit vector

InEq. 4, 1, 0, uand U, are the vectors of acceleration,
velocity, displacement and ground acceleration,
respectively. Processed by using modal analysis
operation (Vamvatsikos and Cornell, 2005), Eq. 4 leads to
modal equations of motion. The modal equation of motion
of a certain mode of vibration can be expressed as:

ﬁ+2§0{)1’1+0{)zu:—FUg (5)

Where:
w = Modal naturalangular frequency
{ = Modal damping ratio

Models m (%) Model k (%) c %) I' = Modal participation factor
mpl0 +10 kplo +10 +10
mpd5 +3 kp05 +5 +5 The modal natural period, usually called as modal
;?31% < _g i(;?gj _2 _2 period, can be written as:
mmlQ -10 kml0 -10 -10

T =2n/m (6)
Table 2: The reduction of consecutive mass (in%o) whereas all stiffhess and
e T S RESULITS AND DISCUSSION
m 80 90 100 110 120
my 90 95 100 105 110 Giving the data in Eq. 1-3 and applying modal
EE }?8 }gg }gg lgg lgg analysis procedures using Eq. 4-5, the modal parameters
e 120 110 100 %0 80 are calculated m various given structural parameters and

Table 3: The reduction of consecutive stiffness (in%) whereas all mass and
damping value are given 100% for m and c, respectively

Models kml10 kmos 5000 kp05 kpl0
k; 80 90 100 110 120
ks 90 95 100 105 110
ks 100 100 100 100 100
ky 110 105 100 Q5 90
k 120 110 100 20 80

structure can be seen in Table 2-4, respectively with the
reference of Table 1. s000 in the tables is the standard
model of the building structure.

the results are discussed. The discussion is limited to
vibration Modes 1 and 2 due to limited space. The
discussion of higher modes of the building vibration is
subjected to future publications.

Variation of mass: Referring to Table 2 with the
explanations in Fig. 1 and Table 1, the modal natural
periods, modal damping ratios and modal participation
factors are obtained and presented in Table 5-7,
respectively. The results in Table 5 are plotted in Fig. 2
where the modal natural periods are normalized to one of
the standard model (s000, 100%).
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Table 5: Modal natural period t (sec)

Mode
Models 1 2 3 4 5
mplo 0.669 0.240 0.153 0.120 0.103
mp05 0.684 0.240 0.153 0.119 0.104
5000 0.698 0.239 0.152 0.118 0.104
mmo3 0.713 0.238 0.151 0.117 0.102
mml) 0.728 0.237 0.150 0.117 0.100

Table 6: Modal damping ratios of each model variation £ (%6

Moade
Models 1 2 3 4 5
mplo 2.35 6.54 10.26 13.13 15.29
mp05 2.30 6.55 10.30 13.22 15.16
5000 2.25 6.57 10.35 13.30 15.17
mmo3 2.20 6.60 10.41 13.38 15.35
mml) 2.16 6.63 10.48 13.45 15.70

Table 7: Modal participation factor of each model variation I”

Mode
Models 1 2 3 4 5
mplo 2,182 -0.690 0.348 -0.164 0.038
mp05 2.138 -0.676 0.349 -0.181 0.059
5000 2.097 -0.660 0.348 -0.194 0.089
mmo3 2.058 -0.643 0.344 -0.201 0.123
mml) 2.022 -0.622 0.337 -0.204 0.160

Figure 2 presents the relationship between reduction
of the mass proportion (x-axis) and normalized natural
periods of Mode 1 and 2 (y-axis). Focusing on Mode 1 as
the proportion of mass are given smaller for the upper
building, the period will shorten linearly as shown in the
fitting curve that has R, = 1 for a linear equation. In the
condition, the buildng will have higher frequency
linearly. Since, Mode 1 dominates the vibration of the
building as indicated in the figure and shown later in the
discussion of the modal participation factors, giving
greater masses for the upper stories will elongate the
building period.

The phenomenon of Mode 2 is in contrary to that one
of Mode 1. Figure 2 reveals that whenever the proportion
of masses for the upper building 1s given smaller than the
lower one, the modal period will be longer. The curve of
the trend of Mode 2 best fits a cubic polynomial equation
for having R, = 1. In the state of larger than the reduction
of around 10%, Fig. 2 informs that the period of Mode 2
will start to shorten.

The calculated modal damping ratios are shown in
Table 6. The results in the Table 6 are plotted in Fig. 3
where the modal damping ratios are normalized to one of
the standard model (s000, 100%).

Figure 3 shows the relationship between reduction
of the mass proportion (x-axis) and the normalized modal
damping ratios of Mode 1 and 2 (y-axis). Focusing on
Mode 1 as the proportion of mass become smaller to the
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Fig. 2: Normalized modal natural periods of Mode 1 and 2
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Fig. 3: Normalized modal damping ratios of Mode 1 and 2

upper building, the damping ratio will be larger in
quadratic as shown m the fitted curve that has
R, =1 for a quadratic equation. Tt means that the modal
motion will decay faster when the masses of lower floors
are given larger proportion than one of the upper
floors.

Since, Mode 1 dominates the vibration of the building
as indicated in the table and shown later i the discussion
of the modal participation factors, giving greater masses
to the upper stories will cause the building to longer
vibrate.

The phenomenon of Mode 2 1s different from one of
Mode 2. Figure 3 reveals that if the proportion of upper
masses of the building is smaller than the lower ones, the
modal dampmg ratio will be smaller. Curve fitting of the
trend for the phenomenon of Mode 2 1s not linear. Setting
the cubic polynomial equation is the best fit for
having R, = 1. In the state of larger than the reduction of
around 10%, the figure notifies that the damping ratio of
Mode 2 will tend to increase.

The calculated modal participation factors are shown
in Table 7. The results in the table are graphed in Fig. 4
where the modal participation factors are normalized to
one of the standard model (s000, 100%).
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Fig. 4: Normalized modal participation factors of

Meode 1 and 2

Figure 4 shows the relationship between reduction of
the mass proportion (x-axis) and normalized modal
participation factors of Mode 1 and 2 (y-axis). The figure
reveals that as the proportion of mass are given smaller
for the upper building, the participation factor of either
Mode 1 and 2 will be larger non-linearly. Tt means that the
motion will become more dominated by Mode 1 and 2
when the masses of upper floors are given smaller
proportion that one of lower floors.

Variation of stiffness: Referring to Table 3 with the
explanations in Fig. 1 and Table 1, the modal natural
periods and the modal damping ratios are computed and
shown in Table & and 9, respectively. The results in
Table 8 are plotted in Fig. 5 where the modal natural
periods are normalized to one of the standard model
(s000, 100%).

Figure 5 shows the relationship between the
reduction of the stiffness proportion and the normalized
modal natural periods of Mode 1 and 2. Focusing on
Mode 1 as the proportion of stiffness are given smaller for
the upper building stories, the period will shorten
cubically as shown in the fitting curve that has R, =1 for
a cubic equation. In that state, the building will have
increasing frequency cubically. Vise a versa when the
proportion stiffness is greater to the upper stories, the
period will elongate. It means that the building will tend to
have a lower frequency.

Since, Mode 1 dominates the vibration of the building
as indicated in the figure and shown later in the
discussion of the modal participation factors, giving
greater stiffness for the upper stories will elongate the
building period. In Fig. 5, the phenomenon of Mode 2 is
not parallel to that one of Mode 1. Increasing the stiffness
of upper stories will not always shorten the modal
period.
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Fig. 5: Normalized modal natural periods of Mode 1 and 2

Table 8: Modal natural period t (sec)

Mode
Models 1 2 3 4 5
kpl0 0.675 0.243 0.155 0.121 0.103
kp05 0.685 0.241 0.153 0.119 0.104
5000 0.698 0.239 0.152 0.118 0.104
km05 0.715 0.239 0.151 0.118 0.103
kml0 0.736 0.240 0.152 0.118 0.101

Table 9: Modal damping ratios of each model variation £ (%)

Mode
Models 1 2 3 4 5
kpl0 2.21 6.81 10.82 13.82 14.73
kp05 222 6.64 10.50 13.50 15.09
5000 2.25 6.57 10.35 13.30 15.17
km05 2.31 6.59 10.38 13.33 14.91
kml0 2.40 6.70 10.55 13.47 14.43

The calculated modal damping ratios are shown in
Table 9. Graphically, the results in the table are shown in
Figure 6 where the modal damping ratios are normalized to
one of the standard model (s000, 100%).

Figure 6 illustrates the relationship between the
reduction of the stiffness proportion and the normalized
damping ratios of Mode 1 and 2.

Focusing on Mode 1 as the proportion of stiffness
become smaller to the upper building, the damping ratio
will be smaller cubically as shown in the fitted curve that
has R, = 1 for a cubic equation. It means that the modal
motion will decay longer when the stiffness of the upper
stories 18 given smaller proportion than one of lower
floors. Since, Mode 1 dominates the building vibration as
indicated in the figure and shown later in the discussion
of the modal participation factors, giving greater stiffness
to the upper stories will cause the building to vibrate
shorter.

It should be noted that the trend of damping
ratios for the stiffness reduction above 10% seems to
become larger. For Mode 2, giving larger or smaller
proportion of stiffness will always increase its damping
ratio.
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Fig. 6: Normalized modal damping ratios of Mode 1 and 2
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Fig. 7: Normalized modal damping ratios of Mode 1 and 2

Table 10: Modal damping ratios of each model variation £ (%6)

Mode
Models 1 2 3 4 5
cpl0 2.44 6.48 10.13 12.98 14.79
cp05 2.35 6.52 10.24 13.14 14.98
s000 2.25 6.57 10.35 13.30 15.17
cm035 215 6.61 10.47 13.46 15.36
cml0 2.06 6.66 10.58 13.62 15.55

Variation of damping value: Referring to Table 4 with the
explanations in Fig. 1 and Table 1, the modal periods and
modal participation factors are not affected by the
variation of damping wvalues of the building story.
However, the modal damping ratios are affected as
indicated in Table 10. Graphically, the results in the
table are plotted in Fig. 7 where the modal damping
ratios are normalized to one of the standard model
(s000, 100%).

Figure 7 shows the relationship between the
reduction of the damping value proportion of the
structure and the normalized damping ratios of Mode 1
and 2. Focusing on Mode 1 as the proportion of damping
values 1s smaller to the upper building stories, the
damping ratio will be larger linearly as indicated by
the best-fitted curve that has R, = 1 for a linear
equation. Tt means that the modal motion will decay faster
when the damping values of upper stories are given
smaller proportion than one of lower stories. This also
means that when the damping values of lower building
stories are given larger to that one of upper stories, the

damping ratio of Mode 1 will become greater. Since,
Mode 1 usually dominates the building vibration, giving
greater damping values to the lower stories will cause the
building to vibrate shorter. The trend of Mode 2 15 in
contrary to one of Mode 2.

CONCLUSION

The general conclusions of this study are: giving
smaller proportion masses for upper building floors will
tend to shorten the period, shorten the vibration and
increase the domination of Mode 1 and 2 providing
smaller proportion of stiffness for upper building stories
will lead to shorten the period of Mode 1 and 3 setting
greater proportion of damping values for lower building
stories will tend to shorten the building vibration.
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