Tournal of Engineering and Applied Sciences 12 (11): 3002-3007, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Threshold Based Active Queue Management (TBAQM) for
Alleviating DoS/Flooding Attacks

Amogh Venkatanarayan, Inder Mohan, Mainul Hasan, Ninni Singh and Gunjan Chhabra
School of Computer Science Engineering, College of Engineering Studies,
University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India

Abstract: Denial of Service (DoS) 1s one of the most effective and strong attacks in cyberspace. They tend to
be frequent due to which optimization 1s being looked at. Over time various methods have been developed and
proposed to reduce this problem but with the advent of high power and high ability devices the strengths of
these attacks have also increased. In such cases, it is highly imperative that a mechamsm be mtroduced in a
marner that doesn’t consume too many resources by itself and yet provides similar means of security. Flooding
attacks are a hindrance to the most basic of security principles, the CIA triad. Availability of resource 1s highly
impaired in such attacks and can be seen as a cause of distress to quite a few. This study presents a threshold
based queue management system which creates a virtual upper bound on the resource allocation so that the
entirety of the resources is never exhausted. Thereby, giving adequate reaction and response time to the lugh
mflux of packets. Proper recogmition of malicious packets will result in proper marking of the sender, thereby
helping the decision of dropping of packets. Furthermore, appropriate studies using a modular simulator have

been made and the results show the efficiency of the proposed method in the aforementioned scenarios.

Key words: Distributed demal of service, queue management, flood attacks, CIA, traid

INTRODUCTION

Denial of Service (DoS) is a cyber-attack which is on
the rise these days. It renders the victim’s system useless,
thereby affecting its availability. Tt is commonly performed
by overwhelming the victim’s system by sending a huge
number of TP paclets. Another manner of performing DoS
1s to get the victim’s system to perform a heavy-duty task,
thereby rendering it useless for anyone else. Flooding
based DoS attack is most commonly performed on the
transport layer and the application layer. Since, the
transport layer 18 responsible for establishing the
communication channel between two devices, it 18 more
rewarding for an attacker to attack on this layer.

Multiple solutions have been proposed over time to
solve this problem. Modifications of queumng algorithms
(Lau et al., 2000) for the sake of better bandwidth
utilization so that all packets reach the server. Changes to
the networl by adding a firewall (Safa et al., 2008) and an
mternal De-Militarized Zone (DMZ) so that the malicious
traffic does not reach the main system. Implementing
various Active Queue Management (AQM) strategies
ensure that the memory and processor utilization is better
(Anelli et al., 2014; Bedi and Shiva, 2014 Maurizio ef ai.,
2015). However, these solutions have drawbacks like need
for large memory, higher processing power, etc.

This study proposes a real-time detection method for
DoS attacks. Making changes to the AQM and
implementing a threshold based activation of the
detection system. Using selective mformation from the
ncoming packets memory 1s conserved. Most of
methods depend on contmuous
assessments which eat mto memory and processing

capacity.

the current

Literature review: Denial of Service (Do3) is possible on
many layers of the network. Use of TCP/IP and UDP
packets are however the most commonly used for
performing such an attack. There are two major types of
DoS attacks that are prevalent, flood DoS and low-rate
DoS. The flooding based DoS attack relies on the
multitude of packets that are sent. The low-rate DoS
attack exploits the homogeneity of the mimmum
Retransmission QOutput (RTO) of TCP flows and causes
link saturation attack.

An internet firewall having some local and some
global level firewalls could be implemented to stop an
attempt of DoS before the malicious traffic reaches the
victim’s network however, this would not work if the
attack 1s happening from inside the same network using
remote access (Chang, 2002).

Corresponding Author: Amogh Venkatanarayan, School of Computer Science Engineering, College of Engineering Studies,
University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
3002

J. Eng. Applied Sci., 12 (11): 3002-3007, 2017

One method to avoid DoS on the main resource
would be to filter all ingress packets outside the network,
using a router neither on attacker’s network nor victim’s,
to produce Address Resolution Protocol (ARP) request to
victim and attacker to ascertain genuineness of the victim
(Safa ez al., 2008). A particle swarm optimization approach,
using half-open connections and number of attacks i a
given period of tine as parameters has also been
suggested (Jamali and Shaker, 2012). However, these
methods rely on additional hardware thus increasing the
complexity of managing the situation.

Behavioral analysis of network traffic gives an idea
whether flood attack is happening or not (Noh et al,
2008). During a flood attack trace-back gives the source
and P1’s marking scheme gives the overlapping of packets
and gives a more holistic 1dea of the flood (L1 and Shemn,
2008). Automata based re-allocation of resources is also
proposed, to minimize the impact of the attack on the
legitimate user (Fradet and Ha, 2010). This 15 another
process by which a flood based DoS attack can be
mitigated.

Active Queue Management (AQM) is a common
method to address requests. FavorQueue suggests that
certain connections which have already established
and are in the active queue be given temporary priority
(Anelli et al, 2014) which in case of small time-to-live
could cause congestion and denial. An approach
mvolving captcha based verification on application
layer and MAC filtration and cryptography based
authentication is proposed but this method requires
higher memory even during normal conditions. An
enhanced AQM using a smaller buffer 1s suggested
(Parakash et al , 2016).

MATERIALS AND METHODS

Flooding based DoS attacks are dangerous because
its longevity can be increased by escalating continuously
after compromise of victim system. There are various
kinds of flood based DoS attacks, namely, ICMP flood,
Ping flood, SYN flood to name a few. Out of these, SYN
flood works to confuse the server regarding the existence
of the client which leads to server allocating resources to
this phantom client.

SYN flood 1s done by misusing the 3-way handshake
protocol at the TCP level. Figure 1 illustrates the 3-way
handshake protocol. The client first sends a SYN
(Synchronize) request to the server whenever the client
system wants to connect to the server. The server, if
available, responds with a SYN ACK packet which means
that the server is ready to connect and service the
client’s request. The last, 3rd packet 1s sent by the client

SYN

i

i

€ SYN.ACK |

__H»_M_:\g_ ACK_ACK ﬂ

Fig. 1: Regular 3-way handshake protocol

i
=

Fig. 2: Attacker’s 3-way handshake protocol

= Flow in server

i T
=

Row in server

o

connection
| #2777 @] — —
(FXIIIY o) — —
| FIX7FT @]
Process query
Server

Close connection

.

Fig. 3: Working of server

ACK ACK, confirmmg the receipt of the server’s
acknowledgement. The use of 3 different types of
packets is the reason why this protocol is called 3-way
handshake protocol. Now, an attacker can misuse
this protocol to fool the server. The attacker misuses the
3-way handshalke protocol by not sending the final
acknowledgement. The sending the
SYN ACK 1s ready to receive the query/frequest and
allocates certain memory so that the request can be
served promptly. When the attacker doesn’t send the
ACK ACK, this causes the server to wait till timeout to
free the allocated resources. Repetition of such malicious
packets, eats into the resources and results in a DoS
attack (Fig. 2 and 3).

server, after

3003

J. Eng. Applied Sci., 12 (11): 3002-3007, 2017

<«— Requesting connection [——»

Client

<«——] Requesting connection |

==\
Client

Fig. 4: Case 1 condition

The server has multiple functions to perform. Starting
from receiving a packet, establishing a connection,
maintaining the connection, processing queries and
finally closing the conmection. However, the focus of this
study, as shown in the Fig. 4 will lie only until getting a
connection and mainly, mamntaining the connection.

Working: A server, when it receives a packet, first has to
check for the kind of packet it has received and then the
source of the packet. The packet is then filtered or
processed accordingly. To keep a track of all the open or
pending services, often a queue 1s used. A queue 1s used
because of its FIFO (Fust m First Out) operation. The
server also operates in a similar manner and processes
requests in the same manner.

In a SYN flood, the queue begins to fill up and
the resources that are allocated are wasted because of
non-utilization. The wastage of this resource is
detrimental as server systems need to be quick and agile
i their operations. Many AQM methods have been
mtroduced to solve this problem but such methods also
end up eating into the resource pool as continuous
checking is done to avoid DoS.

Server

Case |

Check queue
occupancy

More
Than thre-
shold

Reduce timeout

Begin search

Case 2

Check queue
occupancy

En-queue
connection

v

Execute services
process

Server

This study introduces a threshold based active queue
management, so the continuous lookups into the queue,
checking for a possible flood attack can be deferred.

Algorithm (Threshold based AQM):

1: procedure tBAQM Procedure

2: iftBAQ.fillCap greater than tBAQ.Cap/0.8 then3:
timeout-timeout/3

4. for each packet P £ tBAQ do

5. if b-insertTemp(P,tempArr) then->Boolean retum
6. continue

7 else

8: break

& end if

10: end for

11: packet. Common-SearchPack (temp Arr)
12: endif

13: IP-grabIP(packet.Common)->to get IP
14: blacklist(IP)-> temporary blacklisting

15: end procedure

The above algorithm describes the mechanism that is
proposed. When a packet first comes into the server
system and 1s detected as a SYN packet, the server needs
to add its details in the queue, allocate resources and also
send a SYN_ ACK packet to the source of the original
packet.

3004

J. Eng. Applied Sci., 12 (11): 3002-3007, 2017

Case 1: Tf the queue is not filled till 80% of its capacity. In
this case, the SYN packet detail will be added mto the
AQM. The resource for this connection will be allocated
and the acknowledgment will be sent to the original
sender. There will be no change mn the timeout duration
and no other mternal server process other than the one
required by the packet will be started.

Case 2: If the queue has reached 80% capacity. In this
case the packet will be added to the queue but the timeout
duration will be one-third of the original. A new internal
process to search for any kind of malicious packet(s) will
be begun, which will follow the above proposed
algorithm. The state of the active queue will be copied
mnto another data structure in which search would be easy
to do. In that data structure the frequency of similar
packets based on various parameters like Source IP
address or Sequence Number or Packet Pattern can be
employed to detect the flood. Once the flood 1s detected,
TP address of the found common malicious packet will be
blocked temporarily and all the allocated resources would
be freed. This blocking of TP address will be for limited
duration (Fig. 4).

Hence, this algorithm will be able to successfully
differentiate between flood attack and a genuine traffic
surge. Such a mechanism 1s required to make sure that the
service 1s always available for any legitimate user.

RESULTS AND DISCUSSION

The above proposed mechanism was implemented on
OMNET++simulator, as shown in Fig. 5 and 6. OMNET++
provides the framework to create modular and discrete
events in order to study them m detail. A basic template
of the event and network model to be used was made. The
basic template consisted of fixed number of clients
and one attacker in the model. The attacker was
programmed to create a flood attack on the server. All the
clients were programmed to function according to the
3-way handshake protocol. The server allocated resources
and added all packets it received into the active
queue.

In order to make the study more extensive various
measures like delay, bandwidth congestion and variable
client number were simulated. All these contributed to
factors that could increase the chance of making the DoS
attack successful.

The attacker kept the flow of the stream of packets
continuous for the entire duration of the simulation,
whereas all the clients were programmed to not keep the
flow continuous.

Dosnet

;\rcvd:o —f@

Attacker
Server

AN

y 5

0st(0) I—-|ost(l) H-ost(2) Hc;st(3)

Fig. 5: Simulation-1

Dosnet __ /439644397

A&a\@/@

Server

y & g\gg

Host(0) Host(1) Host(2) Host(3) Host(4)

$J

Host(5)

Fig. 6: Simulation-2

Without the implementation of algorithm, 1.e. normal
client-server architecture under attack, the server shut
itself owmg to msufficient resources. Depending on the
rate of nflux of packet, the graph was as shown in Fig. 7.
After the implementation of the algorithm, without the
blocking of the source TP, the algorithm removed all the
common packets from the active queue and continued
regularly until again crossing the threshold. The
efficiency of this algorithm 1s shown in the graph as
shown in Fig. 8. The algorithm achieved its goal of being
able to search and identify the common packets before the
server’s entire resources were exhausted.

The result was measured for variable number of
clients along with mainly two different bandwidth speeds
for the attacker. 100 mbs; in this attacker packet took
around 100 msec to reach the server, during which the
clients with similar bandwidth also operated. But due to
the incessant stream of the attacker’s packets, soon a
congestion condition was achieved, after which the
proposed mechamsm kicked mn and effectively recognized
and reduced the congestion by identifying the malicious

3005

J. Eng. Applied Sci., 12 (11): 3002-3007, 2017

100+
:
% 50
[
-8-DoS 100
5 -u-DoS 150
0 T T L] 1
& P ® S
: ; » >
Q'és G@ QSF i3 S
Time (hh:mm:ss)

Fig. 7: Graph before algorithm implementation

1007
80
g 60
8
ﬁ 40 1
201
--DoS 100
-=-DoS 150
0 T T T 1
& 5 » o
g ¢ % ”
& & S &
Time (hh:mm:ss)

Fig. 8: Graph after algorithm implementation

packets. 150 mbs; in this the attacker packet took around
75 msec to reach the server. The bandwidth for the clients
however was kept at 100 mbs. The rate of increase of the
filling of queue was faster and the threshold congestion
was achieved faster. In this case the number of packets
that were removed from the active queue was also higher
as the number of the malicious packets was higher this
time.

The result was that the threshold based active queue
management system worked effectively to reduce the load
on the main server and the task was not computationally
intensive. The server could effectively ward off the
malicious packets. Under a legitimate traffic, the algorithm
reduced the timeout duration thereby reducing the time an
average client could take but none of the clients faced
unavailability of the service.

CONCLUSION

In this study, a threshold based active queue
management system has been proposed. It actively keeps
track of all mnflux packets by keepmng only some of the
essential information as and when required. The large
timeout time ensures that during normal usage the
detection mechanism doesn’t get activated. This
algorithm helps reduce the load on the processor of the
server as well as the mechanism is activated only when
the threshold is crossed. This mechanism will help protect
systems’ Any different kind of 3-way
handshake exploiting attack can be detected by just

Tesources.

modifying the search perameters of the fimction This
would be a prudent way to keep such attack in check.
Any knd of attempt to attack this system could be
thwarted by this proposed method. Through the results
it was shown how this AQM performs better than the
The graphs that
improvement are a testament to this fact.

existing omnes. show continuous

ACKNOWLEDGEMENTS

This research was supported by the University of
Petroleum and Energy Studies. We would like to specially
acknowledge the support and guidance of Mr. Gunjan
Chhabra, Asst. Professor, UPES. We would alse like to
thark Ms. Nimni Smgh for her guidance and support
throughout the project.

NOMENCLATURE
b = Check for completion of data transter from queue to
array
P = IP address to be blacklisted
P = Packet in TBAQ
packet common = Common Packet
tBAQ = Active Queue
tBAQ.Cap = Total capacity of Queue
tBAQ.fillCap = Capacity filled in the queue
tempArr = Temporary data structure to search
Timeout = Time after which connection will be closed if no action

REFERENCES

Anelli, P., R. Diana and E. Lochin, 2014. FavorQueue: A
parameterless active queue management to improve
TCP traffic performance. Comput. Netw., 60: 171-186.

Bedi, H., 3. Roy and 8. Shiva, 201 4. Mitigating congestion
based DoS aftacks with an enhanced AQM
technique. Comput. Commun., 56; 60-73.

Chang, R.K.C., 2002, Defending against flooding-based
distributed denial-of-service attacks: A tutorial. IEEE
Commun. Magaz., 40: 42-51.

3006

J. Eng. Applied Sci., 12 (11): 3002-3007, 2017

Fradet, P. and S H.T. Ha, 2010. Aspects of availability:
Enforcing timed properties to prevent denial of
service. Sci. Comput. Comput., 75: 516-542.

Jamali, S. and G. Shaker, 2012. PSO-SFDD: Defense
against SYN flooding DoS attacks by employmg PSO
algorithm. Comput. Math. Appl., 63: 214-221.

Lau, F., SH. Rubin, M.H. Smith and L. Trajkovie, 2000.
Distributed demial of service attacks. Proceedings of
the TEEE International Conference on Systems, Man
and Cyberbetics, October 8-11, 2000, IEEE, Nashville,
Tennessee, ISBN:0-7803-6583-6, pp: 2275-2280.

L1, L. and S.B. Shen, 2008. Packet track and traceback
mechanism against demal of service attacks. J. China
Umniv. Posts Telecommun., 15: 51-58.

Maurizio, C., C.A. Grazia, M. Klapez and N. Patriciello,
2015. QRM: A queue rate management for fairness
and TCP flooding protection in mission critical
networks. Comput. Netw., 93: 54-65.

Noh, 8., G. Jung, K. Choi and C. Lee, 2008. Compiling
network traffic into rules using soft computing. Appl.
Soft Comput., 8: 1200-1210.

Prakash, A., M. Satish, T.5.S. Bhargav and N. Bhalaji,
2016. Detection and mitigation of denial of service
attacks using stratified architecture. Procedia
Comput. Sci., 87: 275-280.

Safa, H., M. Chouman, H. Artail and M. Karam, 2008. A
collaborative defense mechanism against syn
flooding attacks in 1p networks. J. Network Comput.
Appl., 31: 509-534.

3007

	3002-3007_Page_1
	3002-3007_Page_2
	3002-3007_Page_3
	3002-3007_Page_4
	3002-3007_Page_5
	3002-3007_Page_6

