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Abstract: Optimization is necessary for the control of any manufacturing process to achieve better product
quality, high productivity with low cost. The beltline moulding process is difficult task due to its low defects,
making the material sensitive to reject. The efficient beltline moulding process mvolves the optimal selection
of operating parameters to maximize the number of production while maintaining the required quality limiting
beltline surface damage. In this research, objective 1s to obtain optimum process parameters which satisfies
given limit, mimmizes number of defects and maximizes the productivity at the same tume. A recently developed
optimization algorithm called particle swarm optimization is used to find optimum process parameters.
Accordingly, the results indicate that a system where multilayer perceptron is used to model and predict
process outputs and particle swarm optimization 1s used to obtain optimum process parameters can be
successfully applied to beltline moulding process through Particle Swarm Optimization (PSO). Results obtained
are superior in comparison with Genetic Algorithm (GA) approach.
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INTRODUCTION

Many are the difficulties encountered by compamies
when choosing to undertake business process analysis
on automotive industry in Malaysia and many are the
reasons for failure. At the analysis stage when the current
processes need to be understood and assessed there are
inherent difficulties in capturing their interdependencies
n a way that 1s structured yet representative. One of the
key difficulties in the structured representation of
business processes is the choice of the level of detail that
is appropriate and relevant for the analysis. Among the
many tools available to support business process
analysis on automotive manufacturing, simulation offers
the great advantage of capturing both the dynamic and
the statistics aspects of the processes. For instance the
frequency of incoming orders the different ways of
servicing different types of customers or the dependency
of downstream processes on the outcome of upstream
ones, can easily be incorporated into a simulation model.
The concept of combimng Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO) simulation 1s presented
in the context of this research. Based on these
considerations, conclusions on the current and future role
of simulation 1in business process modellng are
presented. Although, different resercher have formalised
different defimtions of business processes an overview of
which may be found by Hlupic et al. (2005) there 15 a
general consensus on some common elements: the
process itself whether it 15 referred to as a transformation
of mput as a work flow or as a set of activities its input

and 1its output, often referred to as value to the
customer or business goal (Hlupic et al., 2005, 1998).

Particle Swarm Optimization (PSO) 15 a recently
proposed algorithm by Eberhart and Kemmedy (1995)
motivated by social behaviour of organisms such as bird
flocking and fish schooling. PSO algorithm 1s not only a
tool for optimization but also a tool for representing socio
cognition of human and artificial agents, based on
principles of social psychology. PSO as an optimization
tool provides a population-based search procedure in
which individuals called particles change their position or
state with time. Tn a PSO system, particles fly around in a
multidimensional search space. During flight each particle
adjusts its position according to its own experience and
according to the experience of a neighbouring particle,
making use of the best position encountered by itself and
its neighbour. Thus, as in modern gas and memetic
algorithms, a PSO system combines local search methods
with global search methods, attempting to balance
exploration and exploitation.

The PSO algorithm shares similar characteristics to
Genetic algornthm, however the manner i which the two
algorithms traverse the search space is fundamentally
different. Both Genetic algorithms and Particle Swarm
Optimizers share common elements:

»  Bothimtalize a population in a similar mammer

»  Both use an evaluation function to determine how fit
(good) a potential solution is

»  Both are generational that 15 both repeat the same set
of processes for a predetermined amount of time
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Particle Swarm has two primary operators: velocity
update and Position update. During each generation each
particle is accelerated toward the particles previous best
position and the global best position. At each iteration, a
new velocity value for each particle is calculated based on
its current velocity the distance from its previous best
position and the distance from the global best position.
The new velocity value 1s then used to calculate the next
position of the particle in the search space. This process
1s then iterated a set number of times or until a mmumum
error is achieved.

This study has presented beltline moulding process
by using multilayer perceptron modelling and particle
swarm optimization. A multilayer perceptron model of
beltline moulding was used to determine the optimal
number of hidden umts to represent the model and
particle swarm optimization was used to minimize the
Mean Square Error (MSE) between the actual output and
the modelled output. Two different test cases illustrated
that the combined multilayer perceptron and particle
swarm optimization system is capable of generating
optimal process parameters and can be used successfully
in the parameters selection optimization of beltline
moulding. Particle swarm optimization 1s also proved to be
an efficient optimization algorithm. For the test cases, it
yielded optimal parameter around 100 iterations which
take only a little time with today’s computers.

Literature review: PSO shares many similarities with
evolutionary computation techniques such as Genetic
Algorithms (GA). The system i3 initialized with a
population of random solutions and searches for optima
by updating generations. However, unlike GA, PSO has
no evolution operators such as crossover and mutation.
In PSO, the potential solutions, called particles, fly
through the problem space by following the current
optimum particles.

Each particle keeps track of its coordnates m the
problem space which are associated with the best solution
(fitness) it has achieved so far. The fitness value 1s also
stored. This value is called pbest. Another “best” value
that 1s tracked by the particle swarm optimizer 1s the best
value, obtained so far by any particle in the neighbours of
the particle. This location is called lbest. When a particle
takes all the population as its topological neighbours the
best value 1s a global best and 1s called gbest.

The particle swarm optimization concept consists of
at each time step, changing the velocity of (accelerating)
each particle toward its pbest and lbest locations
(local version of PSO). Acceleration 13 weighted by a
random term with separate random numbers being
generated for acceleration toward pbest and lbest
locations. In past several years, PSO has been

successfully applied in many research and application
areas. It 1s demonstrated that PSO gets better results in a
faster, cheaper way compared with other methods.
Another reason that PSO 1s altractive 1s that there are few
parameters to adjust. One version with slight variations,
works well in a wide variety of applications. Particle
swarm optimization has been used for approaches that
can be used across a wide range of applications as
well as for specific applications focused on a specific
requirement.

Multilayer perceptron models which are developed
for a better understanding of the effects of beltline
moulding process and the resultant quality of beltline can
be combined with optimization methods in order to
determine optimum control parameters for different
objectives such as mimmizing manufacturing cost or
maximizing productivity. Evolutionary computation
algorithms such genetic algorithms and particle swarm
optimization are usually utilized for optimization of
multilayer perceptron based models. Tandon ef al. (2002)
optimized machining parameters in end milling to minimize
machining time by combimng a feed forward neural
network force model with particle swarm optimization.

MATERIALS AND METHODS

Instead of mutation PSO relies on the exchange of
information between ndividuals, called particles of the
population, called swarm. In effect, each particle adjusts
its trajectory towards its own previous best position and
towards the best previous position attained by any
member of its neighbourhood (Kennedy, 1998).

The particles evaluate their positions relative to a
goal (fitness) at every iteration and particles in a local
neighbourhood share memories of their “best” positions
then use those memories to adjust their own velocities
and thus subsequent positions. The orginal formula
developed by Kennedy and Eberhart was improved by
(Shi, 1998) with the introduction of an inertia parameter, w
that mcreases the overall performance of PSO. The best
previous position (i.e., the position corresponding to the
best function value) of the ith particle is recorded and
represented as P, = (P, Pi» --» Pip) and the position change
(velocity) of the ith particle is V, = (¥, vy, ..., ¥ip). The
particles are manipulated according to the following
equations (the superscripts denote the iteration):

Vi =x( @V ot (B X0 )+ etf (B X)) (D
G R @

i=1,2,.,N
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Where:

N = The size of the population

e = A constriction factor which is used to
control and constrict velocities

w = The inertia weight

¢, and ¢, = Two positive constants called the cognitive
and social parameter, respectively

1, andr, = Random numbers uniformly distributed

within the range 0, 1 equation

Eberhart and Kermedy (1995) 13 used to determine the
ith particle’s new velocity at each iteration while Eq. 2
provides the new position of the ith particle, adding its
new velocity to its current position. The performance of
each particle is measured according to a fitness function
which 1s problem dependent. In optimization problems, the
fitness function 1s usually identical with the objective
function under consideration.

The first term on the right hand side of Eq. 1 is the
previous velocity of the particle which enables it to fly in
search space. The second and third terms are used to
change the velocity of the agent according to pbest and
ghest. The iterative approach of PSO can be described as
follows.

Step 1: TInitial position and velocities of agent are
generated. The current position of each particle is set as
pbest. The pbest with best value 1s set as ghbest and this
value 1s stored. The next position 13 evaluated for each
particle by using Eq. 1 and 2.

Step 2: The objective function value is calculated for new
positions of each particle. If a better position is achieved
by an agent, the pbest value 1s replaced by the current
value. As in step 1, gbest value 1s selected among pbest
values. If the new ghest value is better than previous
gbest value, the ghest value is replaced by the current
ghest value and stored.

Step 3: Steps 1 and 2 are repeated until the iteration
number reaches a predetermined iteration number.
Success of PSO depends on the selection of parameters
given in Hqg. 1 (Shi et al., 1998) studied the effects of
parameters and concluded that ¢l and ¢2 can be taken
around the value of 2 independent from problem.
Weighting fumction w 1s usually utilized according to the
following equation:

W =W = W ~ Wonin (3)

max t iter
er, .

Equation 3 decreases the effect of velocity towards
the end of search algorithm which confines the
search in a small area to find optima accurately. The
velocity update step in PSO 1s stochastic due to random

numbers generated which may cause an uncontrolled
increase n velocity and therefore instability m search
algorithm. In order to prevent this usually a maximum and
a minimum allowable velocity 1s selected and mmplemented
in the algorithm. Tn practice these velocities are taken as
[-4.0, +4.0].

The role of the inertia weight, w is considered
important for the PSO’s convergence behaviour. The
inertia weight 13 employed to control the impact of the
previous huistory of velocities on the current velocity.
Thus, the parameter w regulates the trade-off between the
global (wide-ranging) and the local (nearby) exploration
abilities of the swarm. A large inertia weight facilitates
exploration (searching new areas) while a small one tends
to facilitate exploitation, 1.e., fine tuning the current search
area. A proper value for the inertia weight, w provides
balance between the global and local exploration ability of
the swarm and thus results in better solutions.

RESULTS AND DISCUSSION

Modelling the data using MLP: This section shows the
details of the MLP modelling process of defects models.
43 data points were collected from the experiments.
Initially, the dataset consisted 14 variables but parameters
cutter and looper were removed because it carries no
informational value. Therefore, mputs for the MLP
consisted of 12 variables.

For the defects model, the output is the Mean Square
Eiror (MSE) of actual versus modelled defects. MLP uses
tangent-sigmoid activation function in the hidden layer
and lmear activation function in output layer. This
combination of activation functions can approximate any
function (with a finite number of discontinumties) with
arbitrary accuracy, provided that the hidden layer has
enough umts (Demuth and Beale, 2005).

Regularization was used to avoid over-fitting, since
data pomts are not enough to use Early Stopping method.
The MLP weights initialization was performed using the
NW algorithm to improve convergence speed To
implement regularization, traming was performed using
“trainbr”. Tt is important to note that the performance
function for the “trainbr™ algorithm was the Sum Square
Error (S3E) performance function but MSE was used to
guide the PSO optimization.

Both input and output data were preprocessed prior
to traiming so that the model i1s numerically robust
and rapidly converge (Norgaard et al., 2000). The
normalization is transformed so that the mean is removed
{n = 0) and the standard deviation is 1 (¢° = 1). The
rescaling is done so that inputs and outputs reside
between -1 and 1. This step is important so that the inputs
are properly scaled for the transfer function used in the
hidden and output layers.
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Table 1: MLP structure results for defects

Table 2: Summary of results for population size for defects model

Effective number

Training SSE Squared weights of parameters
3.617000 74.1111 8.40997
2.922560 221726 15.80150
0.335414 56.3065 24.08720
0.347128 43.4658 24.63590
0.295796 37.9359 25.92430
0.273642 40.4999 27.44300
0.275927 39.8439 27.36630
0.275453 43.1597 2718740
35.203%0 163.2850 127.00000
0.277340 41.9922 27.03220
0.280599 389334 27.07540
0.274520 42.8866 27.19950

No of defects with 6 hidden units
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Fig. 1: Modelling results for defects model with

12 variables

The tests were performed to determine the optimal
number of hidden units to represent both the defects and
“time” models. The results are presented in section 0.

MLP modelling results: This study describes the
experiments performed to determine the optimal number of
hidden units to represent the model. For this purpose, the
number of hidden units is varied from 1-20 and the model
was evaluated each time the number of hidden units is
changed.

The MLP training was performed for 500 epochs
(cycles) while the SSE performance function was used to
evaluate the convergence of the MLF each time a hidden
unit i3 added or removed. The optimal hidden layer size
was found to be 6 for both defects model. The MLP
training results for the defects model is shown in
Table 1. The SSE comparisons for different hidden layers
and the optimal MLP structures were found. The
modelling results for defeots are shown in Fig. 1.

Feature selection using Particle Swarm Optimization
(PSO): The PSO was used to select the three best inputs
to explain the input-output relationship of defects model.
A ranking-based system was used to select the best
features. Using this system, the value of each particle in

Features selected
Population size  Fitness (MSE) Feature 1 Feature 2 Feature 3
5 0.9461 1 1 12
10 0.9587 1 8 11
15 1.0314 1 1 12
20 0.9855 1 6 11
Table 3: Optimization results (defacts model)
Particles Screw Pulling Line speed MSE
5 34.1610 5.6179 5.0299 0.0349
10 28.5224 4.7581 1.9684 0.0649
15 34.6320 4.8848 5.1947 0.0396
20 32.3356 6.2272 5.0496 0.0311
No of defects with 6 hidden units
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Fig. 2: Best fitting model for defects
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Fig. 3: The defects optimization results using 5 particles

the swarm represents the importance of each feature.
During optimization, the three best-ranked features were
used to train the MLP.

The objective of the PSO is to minimize the MSE
fitting error between the actual output and the modelled
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output. If the features are discriminative the generalization
error should be small since the MLP approximation is
close to the actual output. If the features are not
discriminative, the model approximation should be poor
(indicated by high MSE values). Three experiments were
performed to:

*  Determine the swarm (population) size required for
P3O to converge

¢ Determine the best combination of features to
mimmize production defects

* Determine the best combination of features to
minimize the machine adjustment time

The mmimum population size required to
converge 18 5 for defects. Therefore, the population
of 10 was chosen to sufficiently model both problems
(Table 2 and 3, Fig. 2 and 3).

CONCLUSION

We can conclude for population has 5 individuals
convergence from generation number Zero-20 and best
fiting on generation number 9 with best fitting value
is 6.268. Meanwhile, population has 10 individuals
convergence from generation number 13-20 and best
fiting on generation number 20 with best fitting value 1s
1.314.

Furthermore, GA gave improvement when population
has 15 individuals convergence from generation number
5-20 and best fitting on generation number 15 and 18
with best fiting value s 1.31. But population has
20 individuals gave the better on best fitting value to
1.309 on generation number 16. The fitting value much
better compare to others number of population.

The PSO was used to optimize the mput values for
the MLP. & units were used in the hidden layer. Both the
defects and time models were tested. The objective of the
PSO 1s to mimmize either the number of defects or the
manufacturing time. The fitness 1s calculated as number of
defects or manufacturing time:

+  Function defects and time were used as fitness
functions
¢ Both should yield 0 as best values

Since the mput should be within certain bounds, any
value outside the range of [+1, -1] was clamped during
preprocessing. The optimization was performed for 100
generations with 10 particles for each population. Linearly

decreasing inertia weight was used to ensure good
convergence. The inertia weight starts with 1 and was
decreased after each iterating until it reaches zero. The
population test for the defects model.
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