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Abstract: A new method for finding the largest eigenvalue of a generalised nomnegative polynomial was
mtroduced m 2014 by Ibralum. The method was proven to be convergent for weakly ireducible polynomials.
In the method, an irreducible polynomial is shifted such that it becomes primitive. However, it is unknown what
is the optimal shift and the effect of the step length to the method. Tn this study we examine the effect of the

step length to the method.
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NTRODUCTION

Eigenvalue plays an important roles in marine energy
system, ship structure (Soares and Fricke, 2011), aquatic
conservation (Jacobi and Jonsson, 2011) and many
others. In marine energy system for example, a
mathematics equation is modeled based on the induction
generator, transmission line and grid. The marine energy
system 1s then analysed using the eigenvalues of the
modeled system. In order to solve that kind of problem,
a method was proposed m (Ibralum, 2014). It can solve
general nonnegative irreducible polynomials problem. The
solution of eigenvalue problem of nonnegative irreducible
polynomial is eventually the largest eigenvalue of the
polynomial or also known as the spectral radius. The
method shifts an irreducible polynomial to become a
primitive polynomial. A primitive polynomial ensures the
iterations to converge to the largest eigenvalue. In this
paper, we examine what happen when we use different
step lengths.

MATERIALS AND METHODS

Iterative method: An iterative method for finding the
largest eigenvalue of nonnegative irreducible polynomials
was proposed m (Ibralum, 2014). This method was an
extension of the method by Wood and ONeill (Varga,
1965). Wood and O'Neill presented a method for finding
the largest eigenvalue of matrices which has some
features that are smmilar to the power method (Varga,

1965). Many of important properties of nonnegative
matrices been generalised to tensors such as the Perron
Frobemus Theorem and minimax theorem (Chang ef af.,
2008). This is significance because tensor is much wider
class than matrix. The term “tensor™ 1s basically applied to
data m three or more dimensions. It is also referred to as
higher-order tensor or as a multi-dimensional, multi-way
or n-way array. A matrix 18 a tensor of order two. As a
sequence to the generalisation of important properties of
nonnegative maftrices to nonnegative tensors, Ng et al.
(2009) presented an iterative method for calculating the
largest eigenvalue and the associated eigenvector for
nonnegative square tensors. The numerical results in
(Ng et al., 2009) show that the Ng-Qi-Zhou method is
efficient however not always convergent, for irreducible
tensors. Later, this method was proven to be convergent
for primitive nonnegative square tensors n (Chang ef af.,
2011). Friedland et al (2013), the convergence of the
method under weakly primitive square tensors was
established. An irreducible tensor 1s primitive but not vice
versa.

Zhang and Qi showed that the method has a linear
convergence rate for essentially positive tensors. An
essentially positive tensor is primitive but the reverse is
not valid. Ng et al. (2009) method of was improved in (Liu
et al., 2010) and was proven to be convergent for an
ureducible nonnegative tensor. This improved method
resembled a version of the Collatz method by Wood and
Neill for nomegative matrices. Zhang established the
linear convergence of the improved method for weakly
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positive tensors and Zhou established the Q-linear
convergence of the improved method under weak
irreducibility condition.

Another important developement in this area of
research 1s that the Perron-Frobemus theorem also has
been extended to homogeneous and monotone functions
(Gaubert and Gunawardena, 2004), nonnegative multilinear
forms (Friedland ef al., 2013) and nommegative polynomial
maps (Friedland et al., 2013). This makes it possible for
Thrahim ( 2014) to extend the method of Wood and O’ Neill
(Varga, 1965) to a wider class that 13 general polynomials.
The optimal shift for matrices was mentioned briefly in
however, there was no discussion in literature for tensors
and polynomials. The lack of research about the optimal
shift of the polynomials in the Thrahim’s method (Thrahim,
2014) has inspired this research.

Algorithm: Let: R™> R:

Ply)= E a,x”
asRY
where, 00 = (0L, ..., 00,), 0, = (0, ,0) and x* = (x,%, .., x,),

be a generalized irreducible polynomial with nonnegative
coefficients.

The following algorithm was given in Tbrahim
(2014) for finding the spectral radius of nonnegative
ureducible polynomials. This algorithm was proven to be
convergent.

Algorithm 1: Ibrahim’s Method (Ibrahim, 2014):
Step 0: Choose x'eR.*. Set Q(x) =P(x)+px¥ and letk =1
Step 1: Compute
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Step 2: If thenlet 1= 1 and stop. Otherwise, compute
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Replace k by and k+1 go to Step 1.
RESULTS AND DISCUSSION

Numerical tests was performed using Matlab to
observe the changes in the polynomial shift. Tet A be an
m-ordern -dimensional square tensor.

m

A:(a1112 1m),a1112 L EeRI=L.L, S0

Define order -dimensional column vectors Ax™"' as:

n
m-1 _
Ax - : ; s fn iy - Ky
il Isizn

We use the test function Q(x) = Ax™'+px™;

11
d
Q| 3 an . +e®
1Z1Zn

12, igm=1

The entry of the tensor is randomly generated with so
that 13 nonnegative ureducible polynomials with degree.
In the test, we use d =7. We set the shiftas p=1x107",
p=1x10" p=1x107 p =1, p = 1=x10°, p = 1x10,
p=1x10°, p=1x10", p=1x10", p=1x10" Table 1-3 and
Fig. 1-3 we present the results. From Table 1 and Fig. 1,
the number of iterations are the same when p=1x107",
p=1x10"", p=1x107% p=1. The number of iteration is
increasing starting from p = 1x10” to p = 1x10",
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Fig. 1: Number of iterations when the value of p between
1%107° and 1x10"
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Fig. 2: Runming time m seconds when the value of p
between 1x107° and 1x10"
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Table 1: Number of iterations when 1x10~%<p<1x10'* and 5=n<100

ol n=3 n=10 n=20 n=30 n=40 n=>50 n=100
1.00E-06 4] 4] 6 5 5 5 5
1.00E-04 4] 4] 6 5 5 5 5
1.00E-02 4] 4] 6 5 5 5 5
1.00E+00 4] 4] 5 5 5 5 5
1.00E+02 8 7 6 4] 4] 6 4]
1.00E+04 54 11 7 4] 4] 6 4]
1.00E+05 1000 314 31 13 9 8 4]
1.00E+08 1000 1000 1000 417 143 66 12
1.00E+10 1000 1000 1000 1000 1000 1000 357
1.00E+12 1000 1000 1000 1000 1000 1000 1000
1.00E+14 1000 1000 1000 1000 1000 1000 1000
Table 2: Running time in seconds when 1x10~%<p<1x10** and 52n<100
o] n=35 n=10 n=20 n=30 n=40 n=50 n =100
1.00E-06 0.034741 0.001311 0.001136 0.000889 0.00096 0.001216 0.003782
1.00E-04 0.001268 0.001339 0.001112 0.001143 0.001037 0.001242 0.002381
1.00E-02 0.001379 0.001091 0.001258 0.000864 0.001116 0.001167 0.002164
1.00E+00 0.001033 0.001096 0.0011 0.001153 0.001144 0.00123 0.001577
1.00E+02 0.001435 0.001274 0.001489 0.001771 0.001382 0.002511 0.002015
1.00E+04 0.007901 0.001845 0.001167 0.001016 0.001427 0.001425 0.002738
1.00E+05 0.154388 0.046113 0.004849 0.002997 0.001777 0.002758 0.001664
1.00E+08 0.147597 0.155747 0.180052 0.082755 0.033505 0.013335 0.003442
1.00E+10 0.153302 0.162098 0.215079 0.193352 0.186332 0.222441 0.114848
1.00E+12 0.152532 0.157763 0.166809 0.186715 0.193021 0.209227 0.32675
1.00E+14 0.146636 0.155061 0.170515 0.189394 0.189765 0.206673 0.323734
Table 3: The differences between upper bound and lower bound (&, -4.) of spectral radius at the final iteration
o] n=3> n=10 n=20 n=30 n =40 n=50 n=100
1.00E-06 1.84E-04 2.88E-04 4.88E-04 4.53E-02 1.49E-01 3.11E-01 7.14E-01
1.00E-04 1.84E-04 2.88E-04 4.88E-04 0.54E-02 1.49E-01 3.11E-01 7.14E-01
1.00E-02 1.86E-04 2.88E-04 4.88E-04 0.54E-02 1.49E-01 3.11E-01 7.15E-01
1.00E+00 3.79E-04 3.98E-04 3.94E-02 7.59E-02 1.71E-01 3.80E-01 7.35E-01
1.00E+02 1.17E-04 2.11E-04 1.99E-02 2.70E-02 5.00E-02 8.94E-02 1.21E-01
1.00E+04 2.72E-04 1.90E-03 2.02E-03 7.61E-02 1.56E-01 3.25E-01 6.81E-01
1.00E+05 7.74E+01 2.29E-03 1.70E-02 2.76E-02 9.83E-02 7.34E-02 8.91E-01
1.00E+08 2.68F+03 1.06E+04 1.45E+02 8.94E-02 2.19E-01 4.18E-01 3.17E+00
1.00E+10 2.77E+03 1.78F+04 3.18F+03 1.12E+06 L 11E+06 5.45F+03 5.49F:+00
1.00E+12 2.77E+03 1.79E+04 3.41F+03 1.63E+06 3.97E+06 1.08F+07 1.06E+08
1.00E+14 2. 77E+03 1.79E+04 3.42E+05 1.64E+06 4,02E+06 L11E+07 1.76E+08
2.00E+08 1 of p between p = 1x107° and p = 1x10". For
1.5E+08 4 the value bigger than, it i1s no longer efficient.
g
g 100E+08 CONCLUSION
5.00E+07 1
In this study, we did numerical tests to find out
0.00E+00 1 ¢ =z g s 8 = ez <cg < the mpst efficient po.lynomial. shift in Algqrithm 1.
£ 224 4 dadddd Algorithm 1 is an algorithm to find the largest eigenvalue
= 22222222 :2 = of nonnegative rreducible polynomials. From the results,
Value of p we compare the munber of iterations, runmng time andthe

Fig. 3: The differences between upper bound and lower
bound (% -Ap of spectral radius at the final
iteration when the value of p between 1x107° and
1x10"

In term of running time as we can see from the
Fig. 2, for p = 1x107°, p = 1x107, p = 1x107%, p = 1,
p = 1x10* p = 1x10' running time is acceptable but
there is steep increase when the value of pz21x10%
Figure 3, 1t 13 clear that it efficient to use value
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differences between upper bound and lower bound
|Xk - Lk\ of spectral radius at the final iteration. It 1s safe to
conclude that the most efficient shift 1s However, more
extensive testsis needed. We also need further study to
explain whythe most efficient shift 15 p<1.
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