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Abstract: Statistical logistic regression 1s used for modeling a binary response variable based on a set of
explanatory variables. In practice, the state of the response variable may be described in linguistic terms rather
than in exact ones. So, it is not possible to categorize the samples in one of two response categories and no
usual probability distribution can be considered for such binary response variables. Therefore, statistical
logistic regression is not appropriate for modeling. In this study, researchers propose an adaptive fuzzy least
squares model based on possibility of success that is defined by some linguistic terms. Also for each a-cut,
using bootstrap technicue, researchers discuss the problem of statistical inference. To evaluate the goodness
of fit, a criterion named the capability index 1s calculated. At the end, because of widespread applications of
logistic regression in clinical studies and also, the abundance of vague observations in clinical diagnosis, the
suspected cases to Systematic Lupus Erythematosus (SLE) disease is modeled via an explanatory variable to
detect the application of the model. The results showed that the proposed model could be a rational substituted
model of an ordinary one in modeling the clinical vague status.
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INTRODUCTION

Fuzzy linear regression models are used to obtain and
appropriate linear relation between a dependent variable
and several mdependent variables in a fuzzy environment.
There are two categories of fuzzy regression analysis.
The first 1s the possibilistic method which mimmizes the
total vagueness of the estimated values for the dependent
variables. This analysis was first proposed by
Zadeh et al (1975a, b).

The second category of fuzzy regression analysis
adopts the Fuzzy Teast Squares Method (FL.SM) for
minimizing errors between the observed and estimated
outputs. This approach was mtroduced and developed by
Celmins (19874, b) and Diamond et al. (1988).

Logistic regression is a statistical method for
analyzing a dataset m which there are one or more
mndependent variables that determine an outcome. The
outcome is a binary variable (which takes one of two
possible  values). However, non-precise or vague
observations are occurred frequently in practical
situations, specially in medical studies. For example, due
to lack of suitable instruments or well-defined criteria we
may have suspicion in determining the state of the

response variable (0 or 1) and therefore cannot categorize
the individual samples in one of two response categories.
Lupus is the example in this field which there is no
biological examination and the disease is diagnosed by
some defined and wholly accepted criteria. To distinguish
patients 1n this disease, cases which have some of those
defined criteria (not all of them) have a vague status.
In addition, in some practical situations, it is more flexible
and common to express the amount of response variable
by linguistic terms such as “very low, low, average, high,
very high” instead of crisp numbers. Therefore, in these
situations due to the vague status of cases relative to
response categories, a probability distribution cannot be
considered for the response variable. If the size of data 1s
large enough and proper basic assumptions are satisfied,
ordinary logistic regression would be effective to analyze
given data set. But, if data set includes ambiguous data
which canmot be expressed by exact real number, fuzzy
logistic regression could be an alternative choice
(Namdari et al., 2015).

In this study, we perform logistic regression analysis
with fuzzy data by using bootstrap techniques. It is
well-known that the bootstrap procedure converges
swiftly and bootstrapping is a general approach to
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statistical inference based on building a sampling
distribution for a statistic by resampling from the data at
hand. Researchers shall also discuss estimation and
hypothesis testing for the parameter of a fuzzy logistic
regression model using bootstrap technique. There have
been few studies on the bootstrap statistical inferences of
fuzzy regression (Akban et al., 2012; Lee et al., 2015).

Preliminaries: Some basic definitions are explained in
this section. A fuzzy subset of a universe set X is
specified by a membership function p,: X-[0, 1]. The
collection of all the fuzzy subsets of X 13 denoted by F(X).
If f is a mapping from X to a umverse Y(f: X-Y) and
AeF(X) then the extension principle allows us to define a
fuzzy set B = f{A) m Y with following membership
function:

sup .M (x) i 7 (y)#0
MB(Y): 7 (v) A( ) ( )

0 otherwise

Definition 1: A fuzzy subset of the set of real numbers R
with membership function p,: R~[0, 1] 15 called a fuzzy
number 1f;

*  Ais normal, i.e, there exists an element z, such that
M 2z) = 1
o A is fuzzy convex, ie, V,, zgR u Az +1-4)

Z) = La(Z)A U, (Z,), Yae[0, 1]
* |, is upper semi-continuous
*  Supp(A) = {zeR: p,(2)=0} 1s bounded

Definition 2: A fuzzy number can be represented as a
family of sets called-cuts, A,, defined as:

A, ={zeRu,(z)=a)} for O<a <1
A ={ze Ry, (2)=0}

for & = O based on the resolution identity we get A = Uy
g eA, From the definition of fuzzy number it is easily
seen that every -cut of a fuzzy number is a closed interval
A, =[AL AY, where:

Al =inf{ze R:p, ()= 0},
Al =suplze Rip, (z)2 o}

Definition 3: The anthmetic operations for two fuzzy
numbers A and B with a-cuts A = [A", A" ]and B, = [B',.
B*, are defined as follow:

A_+B, = [A§+B§, Al +BH

For given keR:
B (kAL kAT]ifk >0

kA, =
[kAY, kAL]if k<0

o

ktA, =[ktAL k+A]]

For the subtraction, we use the general Hukuhara
difference:

[aLalle[BLBY]=[C,, L]

where, C', = min {A%-B", A"-B".} and C", = max {A,-B",
A"-BY} We can also represent an a-cut, A, by its
midpoint and width, i.e., A, = (A, A",) where, A", =1/2
(AR A" yand A¥, =4 (A,-A"). In this study, we define
the Euchdean distance between cuts of two fuzzy
numbers A and B (Lee et al., 2015) as:

d(a,. B,) = JlATBD) +(aV-BYY
MATERIALS AND METHODS

Statistical inferences for fuzzy logistic regression model
ordinary logistic regression: In ordinary logistic
regression we have a binary dependent variable (that only
contains data coded as 1 for success and 0 for failure) and
one or more independent variables. The distribution of
such a dependent variable is Bernoulii with success
probabilit p. Now, we need to define a link function. We
know the identity link is not suitable because we have the
problem of non-linearity. There are many different link
functions but the best (or the easiest to interpret) 1s the
logit function. The logit function is the logarithm of the
probability odds. Probability odds are defined as the ratio
of the probability of success and the probability of failure.
So the logit transformation 1s defined as logit(p) = log
p/1-p. This function spreads the probabilities over the real
number line (R) (and hence is a suitable link function. Our
logistic regression model may now be written as follows:

pi
1-p

log =B +Bx, +.+Bx, tE.1=12,...n

1

In such models the parameters are estimated by
maximum likelihood methods. The approach used for
testing the significance of the coefficients in logistic
regression is very similar to the one in linear regression,
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however, it uses the likelihood function for a binary
outcome variable. The confidence mterval estimators for
coefficients are obtained based on their respective
tests.

Fuzzy logistic regression: A solution to a nonlinear
regression problem, especially the logistic regression,
uses the adaptive method. Tn this method by transforming
the variables, the relationship between them becomes
linear. In the logistic case the transformation used for
linearity 1s the logit function. So m the adaptive model the
logit transformation of the output observation is linearly
related to X's.

Studies on the applications of an adaptive fuzzy
regression model have been published (Phibanchon et al.,
2007; Nagar and Srivastava, 2008) simultaneously used
the adaptive technique in the prediction of a binary
response variable. Thewr model expresses the fuzzy
relation between crisp inputs and crisp output
observations. They tested their model on an oral cancer
dataset and compared it with the fuzzy neural network
method.

Pourahmad et af. (2011a, b) applied the adaptive
model using the possibilistic approach and least squares
method. Tn the first case they applied possibility concepts
mn fuzzy logistic regression model mtroducing the term of
“possibilistic odds”. Their model with crisp input, crisp
response and fuzzy parameters minimizes the fuzziness of
the model. The response observations of this model were
the possibility of having the predefined property. In the
second study, they studied a fuzzy logistic least squares
model with crisp input, fuzzy response and fuzzy
parameters.

Hauser et al. (2012) introduced a classification
method combining logistic regression and fuzzy logic in
the determination of sampling sites for feral fish. Recently,
Namdari ez al. (2015) presented a fuzzy logistic regression
model using Least Absolute Deviations (LAD) method.
Chen and Wei (2016) developed a least squares model in
fuzzy logistic regression with crisp mput and fuzzy output
that the coefficients and outputs are LR fuzzy numbers.

Consider the situation in which the response variable
1s a fuzzy observation on the status of each case relative
to binary response categories, i.e., it takes two labels:
approximately 1 or approximately 0 mstead of 1 or 0. Due
to the vague status of cases relative to response
categories, the bimnary response observations are not
precise.

So, we cannot calculate the exact probability of
success and the Bernoulli distribution s not helpful. A

solution is to consider the possibility of success instead
of the probability. Here, the possibility of success can be
considered as a linguistic term such as very low, low,
medium, high or very high (each of which is represented
by a fuzzy number). We propose the following model:

¥, zlogpllL‘":fkn+Alxl+ Li=L2,..,0

1

In this study, we restrict the model mn to the
univariate case without loss of generality; x; is crisp input
(without loss of generality, x>0), A, and A, are the fuzzy
coefficients and ¢ 1s the error without the distribution
assumption. v; as the fuzzy output observation in fact is
the logarithm transformation of possibilistic odds (y; = log
p/1-p) in which p, is the possibility of success. The
membership function of 15 computed from the membership
function of using extension principle. Now we rewrite the
model based on the-cuts of fuzzy numbers:

Vo = A TALXTE

Ktre,i=L2, ..n as[0,1]

For wing the fuzzy least squares method in this
model we need to mimimize the sum of square errors
between the w-cuts of observed outputs (y.) and the
a-cuts of estimated outputs (y;,) i.e., SSE = X', d*(v.., Vo)
where d is the distance defined in 1. To estimate -cuts of
parameters the partial derivatives are set to zero. By
solving the obtained equations the -cut estimators for the
unknown parameters are:

sk R
AILU. = i’ Aé—a - y: 7A1LocX

and:
AchTxi = 2 Aéja._ig _AIUDLX

where, S, = Z_,(x-x)’ and 5" = I _ (y".-v") (xix) and
Sy U= 5% (v, " J(xx). Researchers write A, = [min
{A",. A%}, max{ A%, A%}].j = 0,1 Having the ¢-cuts of
parameters estimators, one can use the resolution identity
introduced by Zadeh (1975a, b) and obtain the fuzzy
estimators of parameters as:

Aj= U ep @A,

where, A,, is the a-cut estimator of the unknown

parameter.

2107



J. Eng. Applied Sci., 11 (9): 2105-2112, 2016

Goodness-of-fit: The goodness-of-fit between the
observed c-cut values and the estimated c-cut values
obtained by the model are evaluated using a capability
index.

Definition 4: Suppose A, BeF(X). Then, the capability
index between a-cuts of A and B 18 defined by:

Card{A_NB,

Iy (A, B) = Card(A, NB,)
Card{A, UB,)

where, Card (A,) 1s the length of the interval A, For fuzzy

logistic regression, the mean of the capability index is

used as a measure of the goodness-of-fit of the model:

1 n ~
MCIOL :;Zzl:[UIa(ywc’ y1cc)

We always have 0<MCle <] and the larger the, the
better the goodness-of-fit.

Bootstrap fuzzy logistic regression analysis: Tn this
study, researchers give a brief review of the bootstrap
technique in regression analysis. Bootstrapping 1s a
general approach to statistical inference based on
building a sampling distribution for a statistic by
resampling from the data at hand The
“bootstrapping”, first mtroduced by Efron (1979) 18 an

term

allusion to the expression “pulling oneself up by one’s
bootstraps™ (in this case, using the sample data as a
population from which repeated samples are drawn). The
key bootstrap analogy 1s therefore as follows: the
population 1s to the sample as the sample 13 to the
bootstrap samples. In this study we use the following
algorithm a.

Alogrithm a:
Step 1: Fit the fuzzy LS model and obtain the estimated response a-cuts as
$ir = ApstArx; and calculate the residuals as &=y, 0, ¥

Step 2: Denote the centered residuals by € €y = By o, £, where §_ is
the mean of B’ i=1,..o.

Step 3: Let fy, be the empirical distribution of residuals, centered at the
mean, so that f, puts mass L/n at each e, then generate a sample of ¢, from
fn (nformally, draw an n-sized bootstrap random sample with
replacement from the e,). Write these new centered residuals as e,
i=1, ..., nthenthe bootstrap sample is generated by:

o~ b
Yie = Yia.+e1oc

Step 4: Having this bootstrap sample, it the fuzzy least squares model and
obtain the estimates as A®;, and A, .

Step 5: Repeat step 3 and step 4 for a large enough number B. According
to the weak law of large numbers, the empirical distribution function g,
converges in probability to the true distribution function. Note that we define
the bootstrap observation ¥, by treating i, as the true parameter and €,
as the population of errors (Wu, 1986).

The bootstrap-based hypothesis test: Tt is also possible to
use the bootstrap method to construct an empirical
sampling distribution for a test statistic. Classical
hypothesis testing methods are usually based on the
statistics whose distributions depend on the distribution
of errors. However, the bootstrap techniques use the
empirical distribution of the test statistic and does not
need any distribution assumption. To construct a
bootstrap test of the hypothesis Hy; A, = A", vs H;:
AL#A" . we use the test
Lee et al. (2015) as follows:

. sz[&fm,{o}} M
Ale

where, d 1s the distance defined in Eq. 1:

statistic proposed by

S}: — Zln: 1 dz (yux’ S(ux)
Ala (1‘1_2)2?:1(}(1 _i)Z

Now, using Eq. 1, researchers can calculate the
bootstrap test statistic T, for each bootstrap sample
{(b=1, ..., B). Using the empirical distribution of T° , we
can compute the p-value of the test as the proportion
of values {T',,, ..., T",,} greater than or equal to the main
test statistic T,

2
bvalue - #{or1l =1,

B

Now suppose the level of significance of the
hypothesis test is denoted by 4. We reject the null
hypothesis H, at significance level A if p<i with
(1-p-value) degree of rejection. Also we can construct a
bootstrap hypothesis test for the intercept coefficient
as:

Hy Ay, =A,, vsHE A #A,,

Here the same process as the test of 1s used. So, the
test statistic is:

T, o) et @

Oe
Alo

Where:
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- dz 2 Amc z
il _ 21:1 (ymﬁ y )(l+ _ X 2)
@ (n-2) n ¥ (x-X)

and then the bootstrap test statistic T", is computed for
each bootstrap sample (b = 1, .., B) and p-value is
calculated as:
. 1
S #{b: Ty, =2 T, |
B
Now we compute 100(1-4)% confidence region for the
intercept and slope, using the empirical sampling
distribution of T%, and T®,,. Based on the ordered values
of T",. 7 = 0, 1 (or quantiles of the bootstrap empirical
distributions), researchers e obtain the critical points t,A
and t,, such that P(T,<t;;) = p(T,,<t;) = 1-A. Therefore,
the estimated confidence regions are computed as:

(AL -AL) +(An-AL) <isyLim01 @)

where, A, and A", are the midpomt and width of
A, 170, 1 respectively.

RESULTS AND DISCUSION

Experimentation of the model on a clinical data set: [n
this study, we use a numerical example to illustrate the
fuzzy logistic model that discussed
sections. The data for thus application was taken from
(Namdari et af., 2015), Systematic Lupus Erythematosus
(SLE) 1s a chronic autoimmune disease which attacks
multiple systems n the body including the skin, bloed,

in previous

lungs, heart, brain and nervous system. There 1s no single
diagnostic test for SLE. Physicians have touse a list of 11
criteria to help them in the diagnosis of SLE. Generally, a
person needs to satisfy at least 4 out of the 11 criteria
before a diagnosis can be made. The question which
arises here 1s about a person with 3 symptoms. Is he/she
considered as a healthy case without any therapy? Or is
the severity of disease the same in patients with 4, 5, ..., 11
criteria? So, the distinction borderline between patients
and healthy people cannot be considered crisp in SLE
disease. Therefore, an expert was asked to assign a
possibility of disease to each case using linguistic terms;
very low, low, medium, high and very high (Namdar ef al.,
2015). Our sample contains 15 females aged 18-40 who are
suspected to have SLE. Anti Nuclear Antibody (ANA)
test that is a diagnostic blood test is used as the
significant risk factor (X) (Table 1).

Table 1: The sample data

Possibility of SLE X
High 112
Medium 80
High 115
High 105
Medium 89
Very high 160
Medium 100
High 100
Low 48
Very low 15
Low 50
Medium 59
Low 83
Low 15
Medium 85
very low low medium high very high
a |
::; a I'\I
'g \
£ S
™
= T T T T T
00 02 04 08 08 10

Fig. 1: Possibilities of SLE

For this situation, Namdari ef al. (2015) assume the
observations as triangular fuzzy numbers that cover the
range of (0, 1) (Fig. 1). To define the relationship between
possibility odds of SLE disease and the mentioned risk
factor we use the following model:

¥, =log P,m =A,+Ax +8,i=12, .15

1-p

The lower and upper bounds of the w-cuts of & and %
for¢ =0,01,0, .., 09 1 are provided n Table 2.
¢ = 1.0 shows the regression coefficient that is most likely
and the ¢ = 0.0 shows the range in which the regression
coefficient could appear. In this example, although these
two regression coefficients i and i are fuzzy, their
most likely values are -3.181 and 0.0392, respectively and
it is impossible for their values to take outside the
ranges of [-3.732,-2.032] and [0.0349, 0.0360], respectively.
For case 1, as an example with ¢ = 0 the ¢-cut of estumated
output based on our proposed model is:
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Table 2: Estimated e-cuts of A and A, for different values of o

Jod 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Adt -3.732 -3.599 -3.485 -3.385 -3.300 -3.228 -3.169 -3.126 -3.102 -3.109 -3.181
Al -2.032 -2.089 -2.155 -2.228 -2.310 -2.401 -2.503 -2.621 -2.760 -2.933 -3.181
AL 0.0349 0.0345 0.0342 0.0340 0.0340 0.0341 0.0345 0.0350 0.0357 0.0370 0.0392
Al 0.0360 0.0356 0.0353 0.0351 0.0351 0.0352 0.0354 0.0358 0.0365 0.0375 0.0392
Table 3: MCL, for different values of «

o4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Our model 0.614 0.592 0.566 0.535 0.506 0.473 0.439 0.374 0.283 0.133
Pourahmad ef ad. (2011a, b) model 0.526 0.498 0.470 0.437 0.340 0.356 0.303 0.244 0.198 0.097

04

o-value

Ay

01

02 04

Fig. 2: The Behavior of p-value

Yo =[-3.732, —2.032] +[0.0349, 0.0360]x112

So that:

=[0.177, 2.000]

Now by one-to-one property of f(x) = exp(x)/1 +exp(x),
the estimated ¢-cut of possibility of SLE for this case is:

.| ep(0177)  exp(2.000)
P T ¥ exp(0177) 1+ exp(2.000

J: [0.544,0881], =0

The observed a-cut of possibility of SLE for this case
for ¢ = 0 18 [0.6,0.9]. Now consider a new case with the
ANA test equals 110. The estimated «-cut (for o = 0) of
output for this new case using our proposed model is:

Vou =[—3.732, —2.032] +]0.0349, 0.0360]x
110 =[0.107, 1.928]

So, the estimated «-cut of possibility of disease for
this case 18 py, = [0.527, 0.873], & = 0 To evaluate the

model based on the proposed mdex (Definition 4) we
calculate MCTe for various «e[0,1] and compare our
model with the model proposed by Pourahmad et al.
(20114, b). As in Table 3, the MCle index of our model is
greater than other’s for all a*s. Also, the mean of this
index for a sequence of 1000 s in our model is 0.493 and
in othermodel is 0.384. To perform the test, 10000 replicate
data sets were created by bootstrap method using the
residuals. We consider two hypotheses as follows:

HU: A]OC:A;I Vs Hl: AJEZ ;é qu:- .] = 0:-1

where, A, and A", are the a-cuts of two symmetric
triangular fuzzy numbers with centers -3.859 and 0.0431,
respectively and spreads 1.162 and 0, respectively. These
fuzzy numbers are estimated perameters of the model
proposed by Pourahmad et al. (2011a). For each ce {0.0,
0.1,..,09,1.0t. Table 4 and 5 show test statistic and
p-value of hypothesis test about A, and A,
respectively.

If the p-value is smaller than significance level A then
the null hypothesis is rejected. Figure 2 shows the
behavior of the p-value for various c-cuts of each A,
=0, 1. As shown in Fig. 2, for the intercept when ¢-cuts
are >0.93 we accept the null hypothesis at the level of
significance A = 0.05 and when w-cuts are <0.93 we reject
the null hypothesis. Also for the slope we accept the null
hypothesis at the level of significance 4 = 0.05 for all «.
This example shows that the statistical significance of the
coefficients changes depending on the vagueness of the
data.

Also, the hypotheses Hy A, = {0} vs H; A #{0},
j =0, 1 were tested by the mentioned bootstrap method
and obtained p-values for various ’s were equal to zero.
Therefore both strongly
significant at A level. The 95% confidence region
defined in 4 for A, A, is provided in Fig. 3 where
the x-axis denotes the cemter AS, A AN/ of
A, = [A,. A°,] the y-axis represents the width
A, = [AY

1

slope and mtercept are

A" ] of and z-axis is o,
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Table 4: Test statistics and p-values for A,

Jod 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
Tow 5.3890 5.6610 5.8390 5.9310 5.9440 58770 57210 5.4590 5.0510 4.4150 3.3310
p-value 0.0037 0.0018 00011 0.0005 00012 0.0016 0.0020 0.0053 0.0120 0.0343 0.1262
Table 5: Test statistics and p-values for A,
o 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
T 1.5400 1.6680 1.7560 1.8080 1.8240 1.8040 1.7430 1.6340 1.4600 1.8730 0.7290
p-value 0.1197 0.0897 0.0769 0.0707 0.0726 0.0775 0.0934 0.1232 0.1611 0.2595 0.4730
@ e '
1
084
064
04 [ e
024 ;
g
e e |
005
Fig. 3: The 95% confidence regions of: a) A;and b) A,
CONCLUSION RECOMMENDATIONS

In this study, researchers have presented an adaptive
fuzzy logistic regression model based on the least squares
method. The proposed model has an advantage compared
to other adaptive fuzzy logistic regression models this
model estimates parameters for each w«-cut of fuzzy
observations of various kinds. On the other hand, there 1s
no need that observations be a special type of fuzzy
numbers (such as L-R or triangular fuzzy numbers). It is
enough to have a-cuts of fuzzy numbers and the
membership function is obtained using the resolution
identity. Also, it sounds the introduced method is simpler
and more accurate than that of Pourahmad et al. (2011a, b)
method.

The proposed model is recommended for crisp input
and fuzzy binary output observations. This adaptive
model uses the logarithmic transformation of possibility
of success (pi) for each case. We consider pi as a
linguistic term (very low, low, medium, high and very
high) by assigning a triangular fuzzy number to each
output in such a way that the union of their supports
covers the whole range of (0, 1) interval.

Researchers also discuss statistical inference in the
presence of fuzzy data using bootstrap techniques. For
each a-cut we tested hypotheses for the logistic
regression model based on the fuzzy least squares
estimator. At the end, a numerical example in the clinical
field was used to detect the applied aspect of our model.

For future work the proposed approach can be
generalized to prediction problems involving other types
of intrinsic linear functions (such as exponential,
reciprocal and growth functions) in the fuzzy environment
with suitable linear transformations.
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