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Abstract: In this study the mathematical model of non-linear dynamics of flexible curvilinear beams in a
stationary temperature field 1s proposed. On a basis of the vanation principles the PDEs governing nonlinear
dynamics of curvilinear nano-beams are derived. The proposed mathematical model does not include any
requirements for the temperature distribution along the beam thickness and it 15 defined via solution to the 2D
Laplace equation for the corresponding boundary conditions. The governing PDEs are reduced to ODEs
employing the finite difference method of a second order and then the counterpart Cauchy problem has been
solved using the 4th order Runge-Kutta method. The convergence of reduction from PDEs to ODEs is validated
by the Runge principle. In particular, it has been shown that the solutions obtamed taking into account the
material nano-structural features are more stable mn comparison to the case where the micro-effects are

neglected.

Key words: Curvilinear Bernoulli-Euler beam, micro and nano-beams, temperature field, non-linear dynamics,

PDEs

INTRODUCTION

The micro and nano-sized beams, plates and
shells are widely applied in the micro and nano
electromechanical systems like sensors measuring the
vibration level (Fu and Zhang, 2010) micro-cables
(Mojahadi et af., 2010} and micro-switchres (Jia ef al,
2011). It should be mentioned that the dependence of
elastic behavior on the body dimensions in the
microscales have been observed experimentally in metals
(Fleck et al., 1994; Nix, 1989) and alloys (Mazza et al.,
1996) as well as in the polymers (Lam et al., 2003) and
crystals (Ma and Clark, 1995). In spite of the numerous
numerically oriented works devoted to study the
mentioned problems being based on the linear modeling,
the carried out laboratory experiments imply a need to take
into account the occurred non-linearity to fit properly
the static and dynamic behavior of the micro and
nano-systems (Scheible et al., 2002). Unfortunately, a
direct application of the classical mechanics of a
deformable body cannot allow for a proper understanding,
modelling and behaviour prediction of the size dependent
features occurred in the scales of micro and submicrons

due to lack of a parameter responsible for the exhibited
scale effects. In the recent time many novel theories have
been proposed to fit properly the scale effects m a
continuum like the couple stress theory (Mindlin and
Tiersten, 1962, Toupin, 1962), the non-local theory of
elasticity (Eringin, 1972), the gradient stramn theory
(Aifantis, 1999, Fleck ef al., 1994) as well as the surface
elasticity theory (Gurtin et al., 1998). Here we are focus
only on the works devoted to mvestigate problems
belonging to theory of elasticity, where the so called
couple stress theory 1s employed. The fundamental
theoretical background to the couple stress theory has
been given i the research by Yang et al. (2002) where in
spite of two Lame constants there is additional material
constant of a igher order. Fleck and Hutchinson (1997)
employed the modified couple stress theory to explain a
dependence of the elastic behaviowr versus the size
dependent parameter. In the recent years the latter theory
has been successfully used by many researchers for a
proper modelling and understanding a size dependent
dynamic behaviour of microstructures (Lazopoulos and
Lazopoulos, 2010, Asghari et al, 2010a, b, Ma et al., 2011,

Corresponding Author: J. Awrejcewicz, Department of Automation, Biomechanics and Mechatronics,
Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
2079



J. Eng. Applied Sci., 11 (9): 2079-2084, 2016

2010). Study by Kiani (2016) deals with transverse
vibration of axially functionally graded tapered nanoscale
beams subjected to a longitudinal temperature gradient.
Using surface elasticity theory of Gurtin et al. (1998), the
equations of motion of the nanostructure are derived
based on the hypotheses of the Rayleigh, Timoshenko
and higher-order beam theory. In study Ghasem: and
Mohandes (2016), the effect of finite
bending of the geometrically nonlinear of micro lammated
compositeEuler-Bernoulli beam based on the Modified
Couple Stress Theory (MCST) 1s mvestigated in a thermal
environment. Study by Li provides a unified and self
consistent treatment of a Functionally Graded Material

strain on

(FGM) micro-beam with varying thermal conductivity
subjected to both non-uniform and uniform temperature
fields. Our objective 13 to determine the effect of the
microscopic size of the beam, the electrostatic gap, the
temperature field and material property on the pull-in
voltage of the micro-beam under different boundary
conditions. The non-uniform temperature field is obtained
by integrating the steady-state heat conduction equation.
The governing equations take into account the
micro-beam size by mtroducing an mtemnal material
length-scale parameter that is based on the modified
couple stress theory. One of the important features of the
employed couple stress theory 1s its ability to explain
static and dynamic behaviour of beams. Note that beams
belong to widely applied structural elements, where
nano-sensors as well as micro and nano-cables and
switchers are attached. This implies a need for a deep
analysis of non-linear deformations of the size dependent
behaviour of beams under both static and dynamic loads.

MATERIALS AND METHODS

Mathematical modeling of the curvilinear bernoulli-euler
beams: In the modified couple stress theory (Yang et al.,
2002) the accumulated energy of deformation II in an
elastic body occupying the space Q = {0O<x<a;
h/2<z<h/2}taking mnto account the mfinitely small
deformations takes the form:

1
1_[ - EJ‘Q (G‘JEU + muxu) (1)
Where:
¢ = Components of the deformation tensors
% = Components of the symmetric tensor of the

curvature gradient

The mentioned components follow:

1
g = E(ul” fu;+ um’lumd)

X 1 (2)
Xi = E(Q” +0,,).6 = E(rot(u))1
Where:
U, = Stand for components of the displacement
vector
1,8 = The infinitely small rotation vector with
compenents 0; and §;denote the Kronecker
symbol

In the case of the linear isotropic elastic material, the
stress implied by the kinematic parameters occurring by
Fu and Zhang (2010) are defined via the following state
Eq. 4

Ty = ME S, + 2pe,,my = 2ul’y, (3)

Where o; &; m; and ¥; and denote components of the
classical stress tensors deformation tensors o the deviator
part of the symmetric tensor of the higher order moment
and the symmetric part of the cwvature tensor 7,
respectively; A = Ev/(1+v)(1-2v), p = E2(1+v), L ame
parameters; E(X, v, Z, &), ¥(X, v, 7, &) Young modulus and
Poisson’s coefficients, respectively; p(x, v, z, ;) density
of beam material; ¢; is deformation intensity.

The parameter | occurring in the moment of a higher
order my, presents and additional independent length
parameter associated with the symmetric tensor of the
rotation gradient. In this model, in spite of the classical
Lame parameters, it is necessary to include one more scale
length parameter (Yang et al, 2002). This follows a
straight forward observation that in the couple stress
theory, a density of the energy of deformation is a
fimction only of the deformation tensor and the symmetric
curvature tensor.

The latter does not depend explicitly on rotation
(non-symmetric part of the deformation gradient) and the
non-symmetric part of the curvature tensor (Yang et af.,
2002). The curvilinear beam has the length L height h the
curvature of the beam middle line/and K, = 1/R, it
possesses the rectangular cross-section (Fig. 1).
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Fig. 1: The investigated Bernoulli-Euler beam
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The following hypotheses are taken: Bernoulli-Euler
hypothesis; geometric non-lnearity in the von Karman
form; the 1sotropic,
non-homogeneous; the beam curvature 1s ncluded on a

beam material 1s elastic and
basis of the Vlasov’s theory. The equations of motion as
well as the boundary and imtial conditions are yielded by
the energetic Ostrogradskiy-Hamilton principle. Recall
that owing to the latter principle two neighbourhood
motions from time instant t, achieve final positions in time

instant t;:
t
I(SK78H+8W)dt =0 ey
ty

Where:

K = Beam kinetic energy

I = Beam potential energy

W = Works of the external forces

Based on the introduced hypotheses and principles,
the beam mathematical model consists of the following
non-linear PDEs in the non-dimensional form:

2 t 2
e L wwy B Uy (3
9% 13 ox ot

1 1 )\o'w u 1{owY  o'w
1=t otk —kw—| — | W |+
e 12 2 )ox ox 2l ax ax -
LI(W,U)+L2(W,W)+qU
2 T 2
B ) M B v
ox | ox ox. ot ot

(6)

In the above:

2 2 .
Ly(uw) = U I (g gy =3 D) T
ox° gx  oxX ox 20 gx | ox
ow 'w
Ly (W) = o

are non-linear operators; (x, t) beam deflection in the
normal direction; u(x, t) beam element displacement in the
longitudinal direction; € damping coefficient; g, amplitude
of external load ; A and v size dependent coefficients; N,"
temperature force; M, temperature moments. The PDEs
(Eq. 5 and 6) should be supplemented by boundary and
mutial conditions. Temperature field is defined based ona
solution to the 2D Laplace equation of the following form:

2 2
ViT(x,2) =2 Ta(’i’z) il Ta(’j’z) -0 )
X Z

with the corresponding thermal boundary conditions of
the 1st-3rd kinds. The temperature moments and forces ,
appeared 1n the PDEs (Eq. 5 and 6) are defined by the
relations:

1z e
NI = _I._U2 T(x,z)dz;M, = I_HzT(X,Z)ZdZ =0 (8)

where, T(x, z) 13 defined by a solution to PDE (Eq. 7) with
corresponding boundary conditions. As itb has been
already mentioned Eq. 5-8 are non-dimensuional and the
relationals between dimensional and non dimensional
parameters follow:

_ w _ uL _ x _ z
W=—U=—,X=—,Z==

h L h
S S [
4 qh“E’ p’ c
_ t L L 1
t=—T=—"\A="A=—

T C h h
o 2 Tr2 T
kX:kXL, g—NXL,M;:MX,T:OLT

h Eh’ Eh?

p = DBeam denstity
= Harth acceleration young module
Constant

Temperature expansion coefficient

Observe that n PDEs (Eq. 5-8) bares overb the non
dimensional quantities arev already omitted.

Algorithm of solution: Tn order to study non-linear
dynamics of the flexible curvilinear Bernoulli-Euler
nano-beams embedded in the thermal field it 13 necessary
to define thermal forces and moment M, which appear
in Eq. 5 and 6. For this purpose we need to solve the 2D
Laplace equation for the boundary problems of the 1st-3rd
kinds. The problem has been solved using the finite
difference method of the second order of accuracy where
as the associated set of the algebraic equations has been
solved via Gauss method. In addition, the convergence of
the employed method has been validated versus a
number of the beam partition regarding the co-ordinates
x and z (the optimal partition 1s 11x 11). The system of
PDEs (Eq. 5 and 6) has been reduced to the system of
ODEs of the second order with respect to time using the
mentioned already finite difference method of the second
order accuracy. The Cauchy problem has been solved via
the 6th and 4th order Runge-Kutta method.
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Since, the results yielded by two methods coincide
we have fmally chosen the 4th order Runge-Kutta
Method (Awrejcewicz et al., 2013) (its computational
time 1s twice less). Researchesr have also investigated a
convergence of the solution of the obtained ODEs versus
a number of partition with respect to the co-ordinate x (the
optimal number of partiton 15 80). Therefore, we have
employed mesh 80x11 while solving the 2D Laplace
equations. Practically, it means that we investigated
nonlinear dynamics of the cwrvilinear Berenoulli-Euler
nano-beams embedded into temperature field as a system
with infinite number of degrees-of-freedom. The problem
of solution stability has been solved via the Rumge
principle.

RESULTS AND DISCUSSION

Numerical experiment: Researchers consider stability of
flexible curvilinear Bemoulli-Euler nano-beams in the
stationary temperature field, i.e., researchers assume that
the Young modulus and the Poisson coefficient do not
depend on temperature and they are constant. The
following parameters are fixed while carrying out the
numerical experiment BE= 2.06 x10° MPa, ¢ = 12.5 x107°
I/grad. As the boundary conditions we take fixed support
on the beam ends:

WO, t) = w0, t) = M, (0, ) = w(1, t) = u(l, )=M,(1, ) = O

The upper beam part is subjected to action of the
constant load umiquely distributed. We assume the
medium damping factor . In order to find a stationary
solution the relaxation method proposed by Tikhonov and
Arserun (1977) and then employed by Feodosev (1963) for
the problem of theory of shells has been employed. This
method belongs to very effective and suitable to solve the
stated problem (Krysko et a«l, 2005). Among the
approximate methods devoted to solution of the problem
the key role play iteration methods yielding a solution
with the regarding accuracy. If an iteration process is
considered as a result of the limiting solution to a certain
time dependent process, the iteration methods can be
considered as those allowing a continuation regarding a
glven parameter.

Researchers are aimed on a study of stability of the
0) and the

Bernoulli-Euler curvature nano-beams (y = 0.3; 0.5)

curvilinear Bemoulli-Euler beams (y =

with/without action of the temperature field. The
dependencies q', (K,) are given in Fig. 2.

For the fixed values of the parameter, yis the
curvilinear nano-beam and Bernoulli-Euler beam have
been initially heated up to the temperature 50°C. The
dependencies ¢, vs. W(0.5)for the parameters k, = 12, 24,
36, 48 are reported in Fig. 3. As the reference stability
criterions those proposed earlier by Volmir and Kantor are

taken.

(10)
whereas the mitial conditions for the beam follow: .
Table 1: Boundary condition for the heat transfer
) _ Parameters Young module Poisson coefficeient
Wix, ) =wx,0)=ux, 0)=ux0=0 (11 T 2)=T z=-12 Oox<1
T{x,2)=0 z=1/2 O]
The boundary conditions for the heat transfer are L &2 =0 z=1 122172
. T(x,2)=0 z=10 -1/2<2<1/2
reported in Table 1.
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Fig. 2: Stability of curvilinera Bernouli Euler beams
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Fig. 3: Dependencies for the parameters
CONCLUSION Awrejcewicz, J., AV, Krysko, IE. Kutepov,

The fundamental conclusion states that the value of
the parameter and the temperature field essentially
mfluence the critical load values of the curvilinear
Bernoulli-Euler nano-beams.

ACKNOWLEDGEMENTS

This research has been supported by the Grant
Russian Science Foundation RSF No. 16-19-10290.

REFERENCES

Adfantis, BE.C., 1999. Strain gradient interpretation of size
effects. Int. J. Fract., 95: 299-314.

Asghari, M., M.H. Kahrobaiyan and M.T. Ahmadian,
2010a. A nonlmear Tunoshenko beam formulation
based on the modified couple stress theory. Int. T.
Eng. Sci., 48 1749-1761.

Asghari, M., M.T. Ahmadian, M.H. Kahrobaivan and
M. Rahaeifard, 2010b. On the size-dependent
behavior of functionally graded micro-beams. Mater.
Des., 31: 2324-2329,

N.A. Zagmboroda and V. Dobriyan et al, 2013.
Chaotic dynamics of flexible euler-bernoulli beams.
Chaos Interdiscip. J. Nonlinear Sci., 23: 43-130.

Eringen, A.C., 1972. Nonlocal polar elastic continua. Int.
J.Eng. Sci., 10: 1-16.

Feodosev, V.I., 1963, On a method of solution of the
nonlinear problems of stability of deformable
systems. J. Appl. Math. Mech., 27: 392-404.

Fleck, N.A. and J.W. Hutchinson, 1997. Strain gradient
plasticity. Adv. Appl. Mech., 33: 296-361.

Fleck, N.A., GM  Muller, MF.  Ashby and
I'W. Hutchinson, 1994. Strain gradient plasticity:
Theory and experiment. Acta Metall Mater.,
42: 475-487.

Fu, Y. and J. Zhang, 2010. Electromechamcal dynamic
buckling phenomenon in symmetric electric fields
actuated microbeams considering material damping.
Acta Mech., 215: 29-42.

Ghasemi, A R. and M. Mohandes, 2016. Size-dependent
bending of  geometrically  nonlinear  of
micro-laminated composite beam based on modified
couple stress theory. Mech. Adv. Compes. Struct., 3:
53-62.

2083



J. Eng. Applied Sci., 11 (9): 2079-2084, 2016

Gurtin, M.E., J. Weissmuller and F. Larche, 1998. A
general theory of curved deformable interfaces in
solids at equilibrium. Philos. Mag., 78: 1093-1109.

Jia, XL. J. Yang and S. Kitipomchai, 2011. Pull-in
instability of geometrically nonlinear micro-switches
under electrostatic and Casimir forces. Acta Mech.,
218: 161-174.

Kantor, B.Y., 1971. Nonlinear Problems of the Theory of
Inhomogeneous Shallow Shells. Naukova Dumka,
Kiev, Ukraine,.

Kiani, K., 2016. Thermo-elasto-dynamic analysis of axially
functionally graded non-uniform nancbeams with
surface energy. Int. I. Eng. Sci., 106: 57-76.

Krysko, V.A., I. Awrejcewicz and S.A. Komarov, 2005.
Nonlinear deformations of spherical panels subjected
to transversal load action. Comput. Methods Appl.
Mech. Eng., 194: 3108-3126.

Lam, D.C.C, F. Yang, A.C.M. Chong, J. Wang and P.
Tong, 2003. Experiments and theory in stramn gradient
elasticity. J. Mech. Phys. Solids, 51: 1477-1508.

Lazopoulos, K.A. and A K. Lazopoulos, 2010. Bending
and buckling of thin strain gradient elastic beams.
Eur. J. Mech. A. Solids, 29: 837-843.

Ma, HM., X 1.. Gaoand IN. Reddy, 2010. A nonclassical
reddy-levinson beam model based on a modified
couple stress theory. Int. J. Multiscale Comput. Eng,.,
8:167-180.

Ma, HM., X L. Gao and I N. Reddy, 2011. A non-classical
mindlin plate model based on a modified couple
stress theory. Acta Mech., 220: 217-235.

Ma, Q. and D.R. Clarke, 1995. Size dependent hardness of
silver single crystals. I. Mater. Res., 10: 853-863.
Mazza, E., S. Abel and I. Dual, 1996. Experimental
determination of mechanical properties of Ni and

Ni-Fe microbars. Microsyst. Technol., 2: 197-202.

Mindlin, R.ID. and HF. Tiersten, 1962. Effects of
couple-stresses 1n linear elasticity. Arch. Rational
Mech. Anal., 11: 415-448.

Mojaheds, M., M. Moghimi Zand and M.T. Ahmadian,
2010, Static pull-in analysis of electrostatically
actuated microbeams using homotopy perturbation
method. Applied Math. Modell., 34: 1032-1041.

Nix, W.D., 1989. Mechanical properties of thin films.
Metall. Trans., 20: 2217-2245.

Scheible, D.V., A. Erbe, RH. Blick and G. Corso, 2002.
Evidence of a nanomechanical resonator being driven
mto chaotic response via the Ruelle-Takens route.
Appl. Phys. Lett., 81: 1884-1886.

Tikhonov, AN. and V.Y. Arsenin, 1977. Methods for
Solving Tll-Posed Problems. John Wiley and Sons,
Hoboken, New Jersey, USA...

Toupin, R.A., 1962, Elastic materials with couple-stresses.
Arch Rational Mech. Anal., 11: 385-414.

Yang, F., A.CM. Chong, D.C.C. Lam and P. Tong, 2002.
Couple stress based strain gradient theory for
elasticity. Int. I. Solids Struct., 39: 2731-2743.

2084



	2079-2084_Page_1
	2079-2084_Page_2
	2079-2084_Page_3
	2079-2084_Page_4
	2079-2084_Page_5
	2079-2084_Page_6

