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Approach for 2D Fuzzy Diffusion Equation
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Abstract: In this study, the iterative methods particularly families of Alternating Group Explicit (AGE) methods
are used to solve finite difference algebraic equation arising from fuzzy diffusion equation is examined. For the
proposed problems, family of AGE methods namely Full-Sweep AGE (FSAGE) and Half-Sweep AGE (HSAGE)
has been considered to be the generated linear solver. The formulation and implementation of these two
proposed methods were also presented. In addition, numerical results by solving two test problems are included
and compared with the Full-Sweep Gauss Seidel (FSGS), FSAGE and HSAGE methods to show their

performance.
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INTRODUCTION

The Alternating Group Explicit (AGE) method 1s one
of the widely used and successful two-stage iterative
methods to solve sparse linear system. The AGE
method employs the fractional splitting strategy which is
applied alternately at each intermediate step on linear
system. In a series of studies, the effectiveness of the
AGE and its variants methods were studied and tested by
solving a variety of scientific problems, for instance refer
(Dahalan et al., 2015a, b, 2013, 201 4; Mohanty and Talwar,
2012; Feng, 2008; Feng and Zheng, 2009, Bildik and Ozlu,
2005). Pesides that, the concept of half-sweep
iteration has been mitiated by (Abdullah, 1991) via the
Explicit Decoupled Group (EDG) method for solving
two-dimensional Poisson equations. The basic idea of the
half-sweep iteration approach is to speed-up the
computational time by reducing the computational
complexity of the solution method.

In this study, performance of the half-sweep iteration
with AGE method, i.e., Half-Sweep Alternating Group
Explicit (HSAGE) method will be investigated for solving
linear systems generated from the fuzzy heat equation.
The performance of HSAGE method will be compared with
the existing standard Gauss-Seidel (GS) and AGE
methods. The standard GS and AGE methods are also
known as Full-Sweep Gauss-Seidel (F3GS) and Full-Sweep
Alternating Group Explicit (FSAGE) methods respectively.

MATERIALS AND METHODS

Finite Difference approximation equations: Letx and y be
two fuzzy subset of real numbers. They are characterized
by a membership function evaluated at t, written x(t) and
y(t) respectively as a number m [0,1]. The membership
function can be used to identified the fuzzy numbers. For,
the ¢« cut of x and y which is denote as a crisp number,
can be written as x(a) and y(a) in {x|*(t)>a} and
{x|¥ ()=}, respectively. Since, they are always closed
and bounded interval for all (Allahviranloo, 2002), the «
cut of fuzzy numbers can be written as:

() =[x( ), x(o0)]
And:

o) =lx{e) v(e)]

Suppose ©# and ¥ be parametric forms of fuzzy
functions x and y, respectively. An arbitrary positive
integer n and m subdivided the interval a<t<b where
x=ath(1=0,1,2, . ,mandy,=aH,(1=0,1,2, .., n) for
I and j, respectively. The step size h and 1 are define
by h=b-a/mand h = b-a/n.

For further discussions on formulating the full-and
half-sweep finite difference approximation equations,
consider the interval that is divided uniformly as shown
mFig 1.
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Fig. 1: a, b) Show distribution of umform node points for
the full-and half-sweep cases respectively

criterion is achieved (Abdullah, 1991). Now, consider
the following general fuzzy heat equation:

U __[2°0 90
E_v[§+?} R=[0<x<nk[0<y<m])

with boundary conditions:
U(x,y,0)=f(x y). (x.y)e R
and 1nitial conditions:
I"J(x, v.t)=g{x v.t). (x, 7. t)€ BRx[0<t < T]

where, 8R was an boundary of R. In this study, we
full-and  half-sweep
finite difference approximation equations based on

derive the formulation of

the implicit scheme, 1.e, Backward Time, Centered
Space (BTCS). By usmng BTCS scheme, Eq. 1 can
be developed as:

a£~ U1,J+1,k+1 _U1,_|,k (2)
ot At
@ ~ U1,J+1,k+1 - U1,_|,k (3)
ot At
With:
At = t_|+1 _t_l
And:
aZL_I - Urp,],kﬂ _2U1,J,k+1 + U1+p,],k+1 (4)

ax’ (ph)z

BZU — Ulfp,_],kﬂ - 2U1,_|,k+1 + U1+p,_|,k+1 (5)
2 2

ox I (ph) |

azg - Ul,]fp,kﬂ - 2U1,_|,k+1 + Ul,]+p,k+1 (6)

v (oh)

U _| U, ,,.,—2U +U

1,7,k +l 1,14p. k4 (7)

oy o]

For full-sweep cases, by applying 2-4, lower
boundary for (Eq. 1) can be reduced to:
VAL
U1,J,k+1 - 1,1,k = hz
8
Ulfl,J,kJrl + U1+1,J,k+1 + Ul,Jfl,kJrl ( )
+U, —4U pn

i,j+Lk+1

fori=1p, 2p, ..., n-pandj=1p, 2p, ..m-p. Meanwhile,
applying Eq. 3, 5 and 7 mto upper boundary for (Eq. 1), it
can be shown:

VAL
U1,],k+1 - i3,k = h2
9)
Ui—l,],k+1 + Ui+l,],k+1 + Ui,]—l,k+1 +
Ui,]+1,k+1 - 4U1,j,k+1
Whereas, for half-sweep cases could be written as:
VAt
Ul,],k+1 - Ul,_],k = 2
—— Zh (10)
U171,_|71,k+1 + U171,_|+1,k+1 + U1+1,_|71,k+1 +
U1+1,j+1,k+1 - 4Ui,],k+1
And:
VAL
Ul,j,k+1 ~ ik T 1
(11)
U1—1,]—1,k+1 + U1—1,j+1,k+1 +
U1+1,]—1,k+1 + U1+1,j+1,k+1 - 4Ui,],k+1

Eventhough, Eq. 10 and 11 have the same form in
terms of the equation but based on the interval of the
a-cuts, the differences identified i the upper and lower
bound, thus it can be rewritten as:
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U1,J,k+1 7U1,J,k =
[UII,J,k+1 + U1+1,J,k+1 + Ul,]—l,kﬂ ”L}
Ui,]+1,k+1 - 4U1,j,k+1
(12)
with p = VAt/h® for full-sweep and:

Uijen ~ Ui =
B (U1—1,j—1,k+1 + Ui—l,]+1,k+1 + ] (1 3)

U1+1,J—1,k+1 + U1+1,J+1,k+1 B 4U1,J,k+1

with B = (VAT/2h*) for half-sweep cases. Moreover, 14
and 15 can be represented m matrix form as follows:

AU =b (14)

i+1 i

Implementation of the BTCS scheme requires to
solve a linear system at each time step and it is
unconditional stable.

Family of alternating group explicit iterative methods:
Based on the splitting of the matrix into the sum of its
constituent symmetric and positive definite matrices,
consider a class of methods be mentioned by Eg. 16,
(Bvans, 1997) as follows:

A=G+G,+G3+Gy (15)

where, G, and G, are the forward and backward differences
in the x-plane. Then, diag (G,) = diag (G,) = 1/4 diag (A)
with (Fig. 2). By reordering the pomts column-wise along
y-direction, G, and G, literally have the same structure as
(G, and G, respectively, (Fig. 3). Then, Eq. 17 becomes:

(G1+G2+G3+G4)U =h (16)

i i

Thus, the explicit form of AGE method can be written as:

g(m ﬂ @I+ G [2f I+ G, -24)] (7D

U{kﬂ —(r1+G,)7| G, Ul g g(kiﬂ (18)

U(H%J =(51+6G,)" G, I;T(k)+ I, [f(k%ﬂ (19)

Fig. 2: Family of alternating group explicit iterative
methods

[1 -1 10 0y )
-11onon

[i] 1 -1
-11

Vioool -1l

Fig. 3: Coulmn-wise direction

And:

g(k*l)_(r21+G4){Gdlg(“)ﬂzg(“iﬂ (20)

Therefore, from Eq. 18-20, the implementation of FSAGE
and HSAGE methods to solve comresponding full- and

half-sweep BTCS approximation equations 1s presented in
Algorithm 1.

Alogrithm 1: Families of age methods:

Initiali d —10 .
nitialize U(D)%Dan e 10710
First sweep

Compute:

U(“ﬂ —(nl+Gy)" [2£+ (rl+ Gy - 2A)}

Second sweep
Compute:

o) the et

Third sweep
Compute:

Fourth sweep
Compute:

ulk) S 1+ (}4){(}4 ulk) U(“%J

Convergence teast. If the convergence criterion i.e.,
is satisfied, go to step. Otherwise

go back to step

Display approximate solutions
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RESULTS AND DISCUSSION

Numerical experiments: In order to compare the
performance of the HSAGE method, the following
fuzzy  heat
problems.

equations were used as the test

Test problem 1 (Kadalbajoo and Rao, 1997):

au 3*U 3*U
E(x,y,t): (X,y,t)+

Jx? ayz
0<x, y=L, t=0

(X:y:t)a (21)

where ﬁ[u]: E(oc),;(oc) :[0.75 +0.250L,1.25—0.250c:| with the
initial condition T(x,7,0)= sin (ay)sin (nx) . The boundary
conditions Tx0.0=Tx1n=0 and Ueoyn=0yn=0. The
exact solution for:

%(X,}@t;&)
d*u d*u 22
— = t: i t:
o (xy.to)+ oy (. y.t00)
And:
du
ﬁ(xay:t:a)
_ _ (23)
= azU(X \j t'oc)+az—U(x y.tat)
axz e 2™ a},z =] 2™
Are:

U(x,y.ta) =1§(Ot)sin(:rl:y)sin(nx)e_ Tt (24)
And:
G(X,y,t;oc) =E(O€)Sin(:l‘l:y)sin(nx)e_ Tt (25)

respectively.
Test problem 2:
a0 2’0 2°0
Ee i L UR L AU REY)

0<x,vy=<1,t=0

where k[e]- li(oz),g(oz) =[075+0.25¢,1.25 - 0.25u | with the
mnitial condition U(x,y,0)=sin (ny)sin{zx) . The boundary
conditions Ugon=Ux1n-0 and Toyb=00yt=0_ The

exact solution for:

du 0’u 0*u
= t: = = t: = t:
g (%Y. hat) o (x,y.t00) + oy (x,y.t0t)
(27)
And:
ou 0'U :
W(x,y,t;o&): (%Y. 60)+ ——(x,y,10)
(28)
Are:
U(xy.to)
(29)
—k(a)sm[lny}sin{ 1 EX} STt
2 2
And:
ﬁ(x,y,t,o&)—k(oe)sin[;ﬁy}
7 (30)
— |t
1 2
sin[ﬂx}e
2
respectively.

For mumerical results, three parameters, i.e., number
of iterations, execution time (in seconds) and Hausdorff
distance (as mention in definition 1) were measured and
considered for comparative analysis.

Definition 1: (Nutanong et f.,011): Given two minimum
bounding rectangles P and Q, a lower bound of the
Hausdorff distance from the elements confined by P to the
elements confined by Q 1s defined as:

HausDistLB(P,Q) = Max

€1y
{MinDist(fm,Q) L E FacesOf(P)}

The computations are performed on a PC with
Intel(R) Core(TM) 2 (1.66, 1.67 GHz) and 1022 MB RAM
and the programs were compiled by using C language.
Throughout, the numerical experiments, the convergence
test considered ._15-10 and carried out on several
different values of n. Moreover, numerical results of FSGS
for solving full-sweep BTCS approximation equations are
also included for comparison purpose. All results of
numerical simulations obtamed from mmplementation of the
FSGS, FSAGE and HSAGE methods for test problems 1
and 2 have been tabulated in Table 1-5. Table 6
described the percentage gains m terms of number of
iterations and execution time FSAGE and HSAGE methods
compared to FSGS method for both test problems.
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Table 1: Numerical results of F8GS, FSAGE and HSAGE methods at o

=0.00
n

Methods 32 64 128 256
Test problem 1 (No. of iterations)
FSGS 181 546 1500 2134
FSAGE 60 186 569 1553
HSAGE 35 106 328 966
Execution time
FSGS 3.83 29.74 322.58 4137.79
FSAGE 1.63 14.03 168.97 2269.53
HSAGE 0.81 5.00 52.89 684.92
Hausdorff distance
FSGS 9.1334e-04  9.1338e-04 9.1351e-04 9.1401e-04
FSAGE 9.1333e-04  9.1335e-04 9.133%-04 9.1352e-04
HSAGE 9.1328e-04  9.1334e-04 9.1336e-04 9.1343e-04
Test problem 2; No. of iterations
FSGS 561 1884 6186 19449
FSAGE 173 585 1971 6477
HSAGE 95 317 1077 3596
Execution time
FSGS 8.62 67.43 773.95 9764.77
FSAGE 3.42 36.09 396.16 5524.52
HSAGE 1.55 11.07 131.04 1847.37
Hausdorff distance
FSGS 0.5198e-07  9.2103e-07 8.0616e-07 3.9726e-07
FSAGE 9.5848e-07  9.4891e-07 9.1788e-07 7.9618e-07
HSAGE 1.9622e-06  9.5754e-07 9.3897e-07 8.7667e-07

Table 2: Numerical results of FSGS8, FSAGE and HSAGE methods

at x=0.25
n

Methods 32 64 128 256
Test problem 1 (No. of iterations)
FsGs 183 554 1543 2284
FRAGE 61 188 577 1601
HSAGE 35 106 333 986
Execution time
FsGs 3.85 29.75 324.20 3952.68
FRAGE 1.64 14.03 169.04 2286.40
HSAGE 0.81 513 53.53 68243
HausdorfY distance
FRGS 83723e-04  83727e-04 8.3740e-04  83790e-04
FSAGE 83722e-04  8372de-04 8.3728e-04 8374le-04
HSAGE 83718e-04  83723e-04 8.3725e-04 83732e-(4
Test problem 2; No. of iterations
FsGs 565 1901 6251 19708
FRAGE 174 589 1988 6545
HSAGE 95 320 1085 3631
Execution time
FsGs 8.54 a67.64 794.78 9877.22
FSAGE 341 32.58 397.57 5522.91
HSAGE 1.55 11.10 133.25 1741.90
HausdorlIT distance
FsGs 8.7188e-07  84120e-07 7.2648e-07 3.2823e-07
FRAGE 8.7840e-07  8.6898e-07 8.3799%-07 T.1663e-07
HSAGE 1.7987e-06  8774le-07 8.5913e-07 7.968%e-07

Table 3: Numerical results of FSGS8, FSAGE and HSAGE methods

atr = 0.50
n
Methods 32 64 128 256
Test problem 1 (No. of iterations)
FSGS 183 560 1570 2416
FSAGE 62 190 583 1629
HSAGE 35 107 335 997

Table 3: Continue

n
Methods 32 a4 128 256
Execution time

F3GS 3.88 29.88 325.38 3960.04
FSAGE 1.65 14.22 170.43 2290.82
HSAGE 0.83 5.04 5346 685.02
Hausdor{T distance

F3GS T.6112e-04 76116e-04  7.6129-04  T.6179e-04
FSAGE T6111e-04 7.6113e-04  T7.6116e-04  7.6130e-04
HSAGE T.6107e-04 T6111e-04  T.6114e-04 T.6121e-04
Test problem 2; No. of iterations

FSGS 567 1910 6291 19873
FSAGE 175 592 2000 6588
HSAGE a6 320 1092 3652
Execution time

FSGS 842 68.65 783.15 9788.74
FSAGE 343 32.83 405,44 5498.81
HSAGE 1.54 11.12 124.70 192315
Hausdor{T distance

F3GS 7.9178e-07 7.6131e-07  6.4681e-07  2.6243e-07
FSAGE 7.9838e-07 7.8908e-07 7.5819e-07 6.3700e-07
HSAGE 1.6351e-06 7.9716e-07  7.7919e-07  7.1709¢-07

Table 4: Numerical results of FSGS, FSAGE and HSAGE methods

at o =0.75
n

Methods 32 a4 128 256
Test problem 1 (No. of iterations)
F3GS 184 562 1585 2698
FSAGE 6l 190 586 1645
HSAGE 35 108 337 1003
Execution time
F3GS 3.83 30.73 328.76 4075.89
FSAGE 1.78 14.13 169.33 2298.88
HSAGE 0.80 5.02 53.39 687.14
Hausdor{T distance
FSGS 4.8501e-04 6.8505e-04 6.8517e-04 6.8567e-04
FSAGE 4.8500e-04 6.8502e-04 6.8505e-04 6.8518e-04
HSAGE 6.8496e-04 6.8500e-04  $.8503e-04  6.8510e-04
Test problem 2; No. of iterations
F3GS 569 1916 6314 19966
FSAGE 176 594 2005 6613
HSAGE a5 322 1094 3664
Execution time
F3GS .68 69.99 805.99 9910.91
FSAGE 342 32.55 400.02 5536.48
HSAGE 1.60 11.38 124.83 1987.29
Hausdor{T distance
FSGS 7.1176e-07 6.8152e-07 5.6736e-07 2.0107e-07
FSAGE 7.1831e-07 7.0923e-07 6.7828e-07 5.576le-07
HSAGE 1.4716e-06 7.1698e-07  6.9921e-07  6.3724e-07

Table 5: Numerical results of FSGS, FSAGE and HSAGE methods at

o =1.00
n

Methods 32 64 128 256
Test problem 1 (No. of iterations)
FSGS 184 564 1590 2774
FSAGE 62 190 586 1650
HSAGE 36 108 336 1006
Execution time
FSGS 3.86 29.58 327.86 4119.54
FSAGE 1.63 14.31 171.39 2298.56
HSAGE 0.86 5.04 53.47 689.51
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Table 5: Continue

n

Methods 32 64 128 256
Hausdorff distance

FsGs 6.0890e-04  6.089de-04 6.0906e-04 6.0956e-04
FRAGE 6.088%-04  A.0891e-04 6.0894e-04  6.0907e-04
HSAGE 6.0886e-04  6.0889e-04 6.0892e-04 6.0898e-04
Test problem 2; No. of iterations

FsGs 570 1918 6322 19996
FRAGE 176 594 2008 6620
HSAGE 96 322 1095 3668
Execution time

FsGs 8.65 69.75 794.75 9640.57
FRAGE 339 32.54 401.98 5516.17
HSAGE 1.55 11.41 125.34 1928.24
HausdorlIT distance

FSGS 6.3181e-07  6.0165e-07 4.8972e-07 1.4564e-07
FRAGE 6.3830e-07  6$.2929e-07  5.9846e-07  4.7822e-07
HSAGE 1.308le-06  6.3683e-07  6.1934e-07  5.5755e-07

Table 6: Percentage gains for FSAGE and HSAGE methods compared to

FSGS method
o Methods Execution time (%) No. of iterations (%6)
Test problem 1
0.00 FSAGE 45.15-57.44 27.23-66.85
HSAGE 78.85-83.60 54.73-80.66
0.25 FSAGE 42.16-57.40 29.90-66.67
HSAGE 78.96-83.49 56.83-80.87
0.50 FSAGE 42.15-57.47 32.57-66.12
HSAGE 78.61-83.57 58.73-80.89
0.75 FSAGE 43.60-54.02 39.03-66.85
HSAGE 79.11-83.76 62.82-80.78
Test problem 2
1.00 FSAGE 44.20-57.77 40.52-66.31
HSAGE 77.72 83.69 63.73-80.85
FSAGE 43.42-60.32 66.70-69.16
0.00 HSAGE 81.08-83.58 81.51-83.17
FSAGE 44.08-60.07 66.79-69.20
0.25 HSAGE 81.85-83.59 81.58-83.19
FSAGE 43.83-60.21 66.85-69.14
0.50 HSAGE 80.35-84.08 81.62-83.25
FSAGE 44.14-60.60 66.88-69.07
0.75 HSAGE 79.95-84.51 81.65-83.30
FSAGE 42.78-60.81 66.89-69.12
1.00 HSAGE 80.00-84.23 81.66-83.21
CONCLUSION

In this study, the family of AGE iterative methods
was used to solve linear systems arise from the
discretization of fuzzy diffusion equation using the
implicit difference scheme. The results show that HSAGE
method 18 more superior in terms of the number of
iterations, execution time and Hausdorff distance
compared to the FSAGE and FSGS methods. Since, AGE
is well suited for parallel computation, it can be
considered as a main advantage because this method has
groups of independent task which can be implemented
simultanecusly. Tt is hoped that the capability of the
proposed method will be helpful for the further
mvestigation m solving any multi-dimensional fuzzy
partial differential equations (Farajzadeh et al., 2010).

Other family of AGE methods as in (Mohanty ef al., 2003;
Evans and Yousif, 1988; Yousif and Evans, 1987; Sukon,
1996) also can be used as linear solvers in solving the
same problem. Apart from the concept of the full and
half-sweep iterations, further investigation of
quarter-sweep (Sulaiman et af., 2009, 2004, 2010; Othman
and Abdullah, 2000) iteration can also be considered in
order to speed up the convergence rate of the
standard proposed iterative methods.
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