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Abstract: Utilizing Halbach magnet array, magnetic flux can be built up on the strong side of the array wlule the
flux cancelled on the other weak side. Inherently, rotor of rotary motor has infinite rotational length with respect

to its rotation while mover of the linear motor has finite length with respect to mover’s translation. This study

starts with a brief introduction of Halbach array and its method in designing linear motors. It then discusses
the difference between conventional permanent magnet array with Halbach array and also the difference
between slotted type and slotless Halbach array. This study has reviewed the implementation of Halbach array
in machines with different topologies and the Halabch magnetization field distribution.
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INTRODUCTION

Halbach magnet amray was proposed by Klaus
Halbach in 1980 when discovered an interesting
permanent magnet configuration that concentrates
magnetic flux on one side of the array and cancels it on
the other side (Halbach, 1980). By superposition, magnetic
flux 1s constructed on one side of the magnet of which
magnetization direction rotates continuously while the
flux 18 destructed on the other side. Halbach magnet array
is widely employed in electric motor as the coil become
denser because of exposed of magnetic flux density. The
more magnetic flux is exposed to the coil, the more
actuating force of the motor is produced by Lorentz force.
The 1deal array of Halbachis resembled with segmented
magnet hence, the continuously rotating magnetization is
difficult to manufacture (Lee ef al, 2004). The linear
motorwith Halbach array can be constructed with either
axially magnetized or radially magnetized mover.

Magnetic flux of Halbach magnet array can be
enhanced on one side (strong side) of the array while
the flux cancelled on the other side (weak side). If Halbach
magnet array is used in electric motor, magnetic flux
density exposed to coil becomes denser. Generally
non-linearity 1s detrimental to position control the motor.
The force ripple is non-linearity characteristics of electric
motor. The more magnetic flux 1s exposed to the coil, the
more actuating force of the motor is produced by Lorentz

force. If the motors can generate more actuating force,
they can move more rapidly. If the motors have no slot,
cogging force ripple will not be generated. Hence, the
electric motor with Halbach magnet array can satisfy
needs of high precision positioning linear motor that 1s
used in high precision manufacturing of semiconductor
industry (Kim et al., 1997).

In particular, the Halbach magnetized mover has
inherent self-shielding property and thereby does not
require a back won. Likewise, the axially magnetized mover
does not need one for the magnetic path while the radially
magnetized mover comprises array surface-mounted
magnet blocks on an iron backing. Moreover, the
fundamental field of the Halbach array is stronger than
that of a conventional array and thus the power efficiency
of the motor with Halbach array is doubled. The magnetic
field of the Halbach array is more purely sinusoidal than
that of the others, thus caused by a simple control
structure (Wang and Howe, 2005). These advantages are
consider the Halbach array particularly appropriate for
linear machines.

This study reviews alternative of Halbach linear
topologies and compares the performance of Halbach
array with conventional permanent type. This study also
describes the slotted and slotless topologies of Halbach
array in desiginglinear motor. Finally the application of
Halbach arrayin linearmotor, generator and high speed
gear are discussed.
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Halbach design

Magnetic field of Halbach: In ideal Halbach array, the
magnet lies between z = 0 and z = d and suppose the
width of block is enough large as shown in Fig. 1, @,-¢,
and are scalar magnetic potentials of three regions.
Vertical and horizontal components of magnetic field are
considered. Tdeal Halbach array hasmagnetization as the
follow:

M, =M, sin{ky)
M, =M, sin(ky)

M, =0
Where:
k = The wave number
k=2mh, A = Wave length of Halbach array
M, = Related to the B,
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Fig. 1. Magnet and the coordinate
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The vertical and horizontal components of magnetic
field have the similar characteristics, therefore only one
component 1s taken into account. Horzontal and vertical
components are all changing along the array sinusoidally
as the amplitude of sine waves can indicate the
characteristics of Halbach array. The magnetic field
equation of the Halbach array 1s expressed as follows:

ﬂi
=)

m
when >0, the equations are expressed as follows:

B, =B [1-¢*]
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B, =B, sin(ky)
B, =B, cos(ky)

Where:

k = The wave number

B, = Remanence

m = The number of magnets per spatial wave length

This 1deal Halbach magnetization is self-shielding in
the permanent magnet and produce sinusoidal airgap filed
distribution as shown m Fig. 2 (Trumper ef al., 1996).

Tdeally, a Halbachmagnetized cylinder structures
would be created from an infinite length cylinder of
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Fig. 2: Halbach PM arrays: a) two segments per pole and b) three segments per pole

1753



J. Eng. Applied Sci., 11 (8): 1752-1761, 2016

Region /7 =

(a)

[~ o

Non-magnetic
= supporting tube

Region /17

(b)

Fig. 3: Field regions: a) Ferromagnetic tube and b) Nonmagnetic tube
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Fig. 4: Different topologies of liner motor with Halbach array

magnetic material with continuously varying direction of
magnetization of magnetic field. The cylinder composed
of ferromagnetic material producing an intense magnetic
field and confined entirely inside with zero field outside.
Advanced rare earth NdFeB magnets have high residual
strength which enhance the magnetic forces. Besides,
strong coercive forces which reduce the demagnetizing
effect and are very stable under higher working
temperatures (Trumper et al., 1996; Reitz et al., 1993,
Moon, 1984; Lee et al., 1997; Jang, 1997; Campbell, 1994;
Zhu and Howe, 2001, Jian and Chau, 2010; Qi et af., 2011,
Dwari and Parsa, 2011; Praveen ef al., 2012).

For linear permanent magnet machines, the active
number of poles does not have to be an even number.For
a given number of pole pairs, different slot/pole number
combinations lead to different winding factors for both
the fundamental and high-order EMF harmonics and for
the armature reaction magnetomotive force distribution.
Further, the cogging torque due to slotting 1s
approximately related to the inverse of the smallest

common multiple of poles. Thus, the choice of a particular
slot/pole combination has a significant influence on the
performance, demagnetization withstand capability and
nowse/vibration characteristics of a motor. If the
permeability of the ferromagnetic supporting tube may be
assumed to be infinite, only two field regions are
considered: the air-gap region I and the permanent magnet
region 2 as shown in Fig. 3 (Wang and Howe, 2005).

Topologies of Halbach linear motor: The structure of
halbachlinear motor are important as an approximate
design may produce widely ligher force density but may
also produce an undesirable destabilizing tooth ripple
cogging force with the highest eddy current loss in the
magnets and the iron, during high speed operation. There
are various possible Halbachmagnetized permanent
magnet machine topologies such asslotted and slotless,
radial and axial-field, rotary and linear as illustrated in
Fig. 4 (Lee et al., 2004).
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One of the disadvantages faced in the slotted motor
design 1s cogging effect as it causes a ripple mn the torque
generated by the motor (Zhu and Howe, 2001). The
cogging effect is produced by the interaction between the
rotor magnetic flux and the variation of stator reluctance
caused by sloting. Cogging torque is caused by the
variation of the magnetic energy stored in the air gap
which is resulted from the angular position of the rotor. A
slotless motor design on the other hand, eliminates the
tooth ripple component of cogging and also produces
very little slot harmonic effects thereby facilitating the
production of smooth output torque required for the
application. However, the output torque generated by the
slotless motor 1s low compared to that by an equvalent
slotted one due to its large air gap (Shao ef al., 2013
HO et al, 2015; Tin et al, 2015, Zhang et al, 2015;
Liet al, 2014; Liu et al., 2014; Ting and Zhang, 2013;
Shen and Zhu, 2013; Xu et al., 2016).

Figure 5 1s shown that slotless tubular PM actuators
using quasi-Halbach magnetization patterns have a
number of attractive characteristics, such as a sinusoidal
back-electromotive force (back-EMF) waveform which
produces a very low electromagnetic force ripple and
very low cogging force. Due to the “self-shielding”
of Halbacharray, the
magnetic flux which passes through the core 1s

magnetization characteristics

relatively weak (Meessen ef al., 2011; Praveen ef al,
2012).

On the other side, conventional iron-cored permanent
magnet motor can be designed to have a high efficiency;
the no-load iron loss with significant high rotational
speeds. In addition, unbalanced magnetic pull, both on
no-load and full-load may impose excessive
force/stiffness requirements on the bearing system. An
aircored rotor with slotless stator Halbach machines
overcome these problems while still offering a relatively
high power density.

Figure 6 and 7 show the predicted result obtained by
finite element analysis and measurement for air-cored and
wron-cored Halbach magnetization motor, respectively. In
air-cored machine the air-gap flux density varies
significantly with the pole number. An optimal
combination of the magnet thickness and the pole number
of air-cored machine produces the maximum air-gap flux
density. On the other hand the back iron of the iron-cored
machine can enhance the air-gap field and electromagnetic
torque by reducing the radial thickness of the magnet

(Xia et al., 2004).
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Fig. 6: Air-gap flux density distributions: a) Air-cored
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Fig. 7. Comparison of analytically and fimte-element-
predicted predicted field distributions for 12-pole,
slotless, 1ron-cored, external Rotor Halbach
magnetized magnet machine
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Fig. 8: Intuitive illustration of flux distribution in conventional and Halbach magnet arrays

RESULTS AND DISCUSSION

Comparison of Halbach array and conventional
permenant magnet array: Halbach array models have
one-sideness on discrete’ where a magnetic block is being
composed of paired magnetic charges. Magnetic fields
emanate from positive magnetic charges and terminate on
negative charges. Then, field lines from positive charges
terminate on the closest “free™ negative charge. This 1s
the simple rule as conventional magnet array
isconstructed, asshown in Fig. 8a. The field lines from the
Halbach array are constructed via superposition. Firstly,
magnet blocks separated mto a radial (vertical for a linear
motor) array and an azimuthal (horizontal for a linear
motor) array as shown in Fig. 8b, ¢ (Ofori-Tenkorrang and
Lang, 1995). By applying the simple rules as mentioned
above, one can easily construct the field lines for the
individual arrays. The spatial flux distribution of the
combined array is the sum of the flux distributions for the
individual arrays. There 1s cancellation of field charges on
one side of the array while on the other side of the array

the field charges will be added. The radial array of
magnets is applied to generate the rotational
magnetization vectors either clockwise or counter
clockwise while the azimuthal array of magnets is used to
cancel the field charges. Figure 9 shows the comparison
of the torque production capability of Halbach and
conventional array of rotor magnet arrangements for a
slotless armature. This shows that in conventional array
a motor needsa back-op permeable to produces a higher
torque, meanwhile, the Halbach arrangement always
produces higher torquewithout a bacl-up permeable
rotor. For a certamn thickness of magnet, the Halbach
array always produces higher torque as compare to
the conventional array (Ofori-Tenkorrang and Lang,
1995; Saha et af., 2012; Liu and Garrett, 2005, Wakeland,
2000; Swift and Garrett, 2003).

Application: The linear motors provide the better dynamic
performance and higher reliability over conventional
rotary-to-linear counterparts because of the absence of
mechanical gears and transmission system. Among the
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Fig. 9: The comparison of the torque production capability of Halbach and conventional rotor magnet arrangements
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various linear machine topologies, tubular permanent
magnet machines provide the highest efficiency;
offer a high power/force density and excellent servo
characteristics. A permanent magnetlinearmotor is a motor
in which the motion goes in a straight line rather than in
a circular motion. This type of motor 1s appropriate for
applications that require motive force in a specific
direction. Examples of ideal applications are printer heads
and other types of office automation machines. Linear
actuators can also be used for juicers, machines with
pistons, systems to lock and unlock car deoors and
conveyor belts. In fact, there is an extremely wide
range of products and applications for which a linear
actuator 1s a great fit. Hence, linear permanent magnet

machine are being used increasingly in application as
varied as manufacturing automation, electrical power
generation, transportation, healthcare and house hold
appliances. in the
semiconductor fabrication and mspection processes.
According to the application of liner motor 1t could be
divided into two categories such as low-acceleration
and high-acceleration linear motors. Low-acceleration
linear motors are suitable for maglev tramns and
other  ground-based  transportation  applications.
Halbachlinear motors are normally rather short and are
designed to accelerate an object to a very high speed.
Figure 10 shows different types of linear motor with
Halbach array.

Linear motors are also useful
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Recent research introduces us to Dual Halbach array
which proposes to enhance flux density in air gap and
thus to improve output performance of linear
machines. (Holmberg et af, 2003, Yan ef af., 2013;
Halbach, 1980; Choi and Yoo, 2008) magnetic field in
three-dimensional space of a tubular linear machine with
dual Halbach array is formulated based on Laplace’s and
Poisson’s equations. In Fig. 10 magnet arrays with
alternating magnetization directions are to produce
radially directed flux density across the air gap of
permanent magnet linear motor. It can not only mcrease
the radial component of flux density which is important for
axial force generation but also decrease the local force
radial component which causes vibrations. Numerical
result from Finite Element Method (FEM) 1s utilized to
analyze and observe flux variation in three-dimensional
space of the machine. Tt is a coordination of two Halbach
arrays, especially with the same magnetization pattern for
radially magnetized PMs and the opposite magnetization
pattern for axial ones. This special arrangement can
increase the radial component of magnetic flux density
greatly in the air gap whereas reduces the axial flux
density sigmficantly. It indicates that the dual Halbach
array may offer two advantages:

¢+  The axial force can be improved much from the
mereased radial flux

s  The radial force disturbance and vibration can be
weakened from the decreased axial flux

For winding region, the mathematical model of the
flux distribution 18 compared with both FEM and
experimental results. For magnet region, the model is
compared with FEM results as the probe cannot measure
the flux field at this region. Magnetic field in either magnet
region varies in line with the magnetization vector M.
Therefore, the radial flux component is even-symmetric
about z = 0 while the axial field is odd-symmetric. The
radial flux density in the internal magnet area is greater
than that in the external magnet area due to a decreasing
section crossed by constant fluxlines as shown is Fig. 11
(Holmberg et al., 2003).

In many application of linear Halbach permanent
magnet motor, the machine runs in a reciprocating linear
motion while produces a linear three-phase output
voltage. Tt is not a real three-phase output like in the
rotary machine, since the machine runs forward and then
moves backward after it reaches the end of the motion. A
long-translator machine is the type selected for better
overall performance as shown in Fig. 10. The governing
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Fig. 13: Double sided ironless synchronous liner motor and its magnetization and characteristic curve

equations are built with the following assumptions for
simplification (Zhang et al., 2015; Wyono et al., 2010,
Wang ef al., 2001):

+  First, the machine isanalysed without the stator slot.
In the flux linkage calculation, the slots effect is
usually incorporated by applying the Carter
coefficient

*  Then, the machine 1s assumed to be infinitively long
and has a periodic construction

The permeability of the stator core 1s assumed to be
infinite whereas the relative permeability of the
winding, air gap and permanent magnet as well as the
shaft is assumed to be one

The flux linkages are plotted in Fig. 12 where flux

linkage for all windings shows the tlwee phase linear
motor flux. Further, development in term of flux leakage of
linear Halbach array is wonless permanent magnet linear
synchronous motor which has advantages of low thrust
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fluctuation, highprecision positioning, high dynamic
performance (Wang et al, 2001). This linear motor is
widely used n low power application servo system. Flux
leakage in linear statoris lees m horizontal magnetization
direction compare to the vertical (Bianchi, 2000) as shown
in Fig. 13 while bias amount of a negative DC is decreased
a bit. Byusing the steel stator, attraction is greatly
increased which reduces extra load.

CONCLUSION

Halbach array will be a favorable magnet design
because of its self-shielding property and existence of
distributed sinusoidal magnetic field in air gap. It is
extensively used in linear motor system. The overall cost
of Halbach array is lower than the conventional array in
order to produce same amount of thrust. The impact is
studied in comparison of different topologies of machines,
their flux density and produced torque. In the future
study, permanent linear magnet motor with dual Halbach
array is proposed for further improvement of the magnetic
flux density and thus increases the force output and
displacement of mover. Dual Halbach arraycan minimize
the volume of magnet array in linear motor. Halbach
magnet arrays are a beneficial choice to reduce both the
weightand the volume of the machine. Tt can also increase
the magnetic flux density and therefore the torque output
would be increased for ironless axial flux linear motor.
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