Tournal of Engineering and Applied Sciences 11 (8): 1706-1713, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

Execute Trading Policies on Optimal Portfolio When Stochastic
Volatility and Inflation Effect Were Considered

"Ashri Putri Rahadia, *Nora Amelda Rizalb and *Budhi Arta Suryac
'School of Business and Management, Institut Teknologi Bandung,
Bandung, Jawa, Barat, Indonesia
*Faculty of Economy and Business, Telkom University, Jawa, Barat, Indonesia
*MSCR, Victoria University of Wellington, Wellington, Newzealand

Abstract: Tempting to formulate the long-term investment strategy for investors who dynamically adjust her
portfolio over her lifetime, we are interested to optimize the end-of-period terminal wealth using Bellman
principles. We designed the portfolio to be replete with risky asset and risk-less asset/fixed-income asset in the
continuous framework. The stochastic volatility model is depicted in risky asset dynamic known as Constant
Elasticity of Variance (CEV) because the empirical bias of leverage effect in stock price evolution founded by
Black Scholes can be directly examined. Meanwhile, the bond pricing analysis was no longer classified as risk-
free asset because it was analyzed under the stochastic Inflation and interest rate of affine structures named
Vasicek. Because we want to reflect their mean-reverting behavior as they're hovering around their long-term
mean. Later, state space was constructed and portion of risky asset was elected to be control variables for
supremum over value function. The concept of investment decision is intertemporal as today decision affected
tomorrow's which finding its optimal rate would be trade-off for mvestor. For this, we framed the decision
criteria with mvestor's utility function from class Decreasing Absolute Risk Aversion (DARA), the class that
generally most investor mostly consistent with. The problem description above can be represented as
stochastic optimal control problem and it was solved with dynamic programming argument with modified
verification theorem to tackle the 1ssue of Stochastic Differential Equation well-posedness violation. Through
stages of change variables, we were able to find the closed form trading solution from corresponding Hamilton
Jacobi Bellman (HIB) equation. Compare to standard Merton model, our trading strategies strength are
determining interest rate, inflation rate and degree of leverage for improvement and hence have inline economic

logic reasomng for our solutions.
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INTRODUCTION

Meintyre was the frontierman of analyzing optimal
asset allocation study for economic agent who wish to
maximize her bequest wealth using static portfolio of two
market asset model with the respect of return and variance
as risk measurement for one period. He obtained singleton
trading strategy for whole time in investment period as the
distribution of asset return need to obey normal and
elliptical families. Usmg Hamilton Jacobi Bellman
arguments, dynamic optimization was later developed by
Christine with uncertainty source from risky asset in
discrete time framework. The seminal work of Neitz and
Neitz (2000) framed Samuelson’s work m continuous time
framework with generalized Hyperbolic Absolute Risk
Aversion (HARA) utility of terminal wealth and he

acquired closed form trading strategy. Merton and
Samuelson developed vary trading strategy as the
corresponding from mvestor’s wealth.

Following Merton’s in this study we employed
dynamic programming methodology which able to
described good system characteristic with appropriate
boundary condition employed as we want to maximize
end-of-period wealth. Tn contrast, different method of
solving optimal solution to the asset allocation problem
also able to be tackled by utilize Maximum Principle which
ploneered by Healy et al. (1992). This approach 1s
favoured if we want to obtain random target based in the
end of investment period, well known as Backward
Stochastic Differential Equation (BSDE) (Brettel et af.,
1997) explored the BSDE theory for linear case m which
had been debuted by Poret et al. (2009). The other
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different method of solving optimal in investment decision
15 enriched by exercising martingale techmique. This
methods was widely developed among researchers,
ie, Ohkubo and Kobayashi (2008), Plataniotis and
Vinetsanopoulos (2000), Dowell (2008),Yang and Ro
(2003), Kuo and Hsu (1996), Swain and Ballard (1991 ) and
Birch ( 2012).

In the present years, Merton’s model enhancement in
continuous-time are in addressing stochastic economic
parameters into the optimization model. Hood et al. (2006)
who limited maximum risky asset belonging with
stochastic borrowing constraint (Nathans et al., 1986) put
stochastic risk premium in the design of non-myopic
portfolio (Sharpe et al., 1999) research was about effect
of endogenously stochastic risk factors in dynamics of
risky asset (Walraven and Alferdinck, 1997) considered
ergodic Markov mterest in the model (Bimber ef ai., 2007)
exemplified the portfolio with stochastic interest rate,
appreciation rate and volatility variables (20) worked on
long term mvestment so that stochastic inflation rates had
been taken into portfolio decision concern (Brettel ef al.,
1997; Solem, 2012) for different aims had used Vasicek
interest rate.

Most scholars utilized standard Geometric Brownian
Motion (GBM) for describing the dynamics of stock price
evolution. Meanwhile many empirical bias found by Black
and Scholes that stock price evolution exhibited leverage
effect. As the stock price has decreased, the volatility will
mcrease and vice versa. This finding will argue that
behavior described by GBM will be improved by Constant
Elasticity of Variance (CEV). Cox and Ross. Firstly
mtroduced to CEV process for modeling the option
pricing. But in last decades many researcher have
delivered the investment-consumption optimization
employing CEV process as stock price movement, i.e., in
pension plan terminal wealth optimization, combined CEV
process in stock with deterministic bond  for
multi-assets. Extended the work of with consumption case
used optimal dynamic mean-variance with CEV with
borrowing constraint.

However, above mentioned CEV’s paper used
deterministic economic parameter (interest rate) with no
consideration in random inflation rate in which
researchers found very contrast to reality. Thus we want
to use the idea of using stochastic volatility, the paper
that has one pattern with us is which is present the
partially observed price level in terms of inflation effect on
portfolio. But what distinguish owr work is that the
consideration of the leverage effect on stock price on the
CEV Model.

We exercised with log-utility function as the branch
of utility function Decreasing Absolute Risk Aversion
(DARA) risk preference shown through experiments that
DARA type of utility function was mostly consistent on

the demand for risky asset. We designed our portfolio
with risky asset and risk-less asset and the setting 1s
working under stochastic environment. Using Martingale
techmque asset pricing to derive solution of optimal
policy with Vasicek process on inflation rate and interest
rate and applying model of standardized Browman motion
of stock price evolution. Extended the work of them, we
employed CEV process for stock price evolution for
leverage effect examination. Explicit solution to the
optimal trading strategy through the derivation of HIB
equation which was distinguished from martingale
technique was obtained. Result of this paper showed that
the optimal policy did not perform as feedback form of
wealth process. Hence, this finding was aligning to the
Merton's as well as. However, this model can depict well
that the trading strategies for stock and bond were
depending on the degree of leverage asset characteristic
as well as inflation rate and mnterest rate.

MATERIALS AND METHODS

Analysis of portfolio problem: Considering the market
which was driven by uncertainty environment as it can be
described by Probability Space (Q, F, P) with natural
filtration F = {F} 0<t<T. As () is given set, F is a 0-algebra
of € and P is probability measure on measurable
space (Q, F) that mapped F into (0,1). The filtration was
conducted by Wiener Process as representation of market
information flow availability. Assuming that the price
process of n available traded asset 1s affected by rate of
interest, rate of inflation and some uncertainty. All
variables mentioned here were to be F-measurable. The
wealth process X*® is the self-financing portfolio with the
sum of relative assets weight equal to one.

The problem setup: Suppose an economic agent have the
purpose of investing her initial wealth so that regularly
she could have her bequest in the end of investment end
period. She would like to apply the diversification
principle over her portfolio by investing some portion n
risky asset and risk-less asset. The risky assets behave
randomly mn capital market and to show the stochastic
volatility of CEV we represent its price dynamic as in
Eq L:

dS(t) = S, (HdtHST (Do, dW(t) (M

with drift coefficient pt) = A4r (t). The pt) an o, are
respectively mean and standard deviation associated with
stock evolution W (1) is the standard Brownian motion
associated with stock evolution and A, is the risk premium
over interest rate r(t). In this system we would like to
introduce the stochastic mflation rate m which 1s compiled
to Vasicek process in Eq. 2:
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dn(t) = am-n(t)dt+c, dW_(t) 2

The closed-form selution (t) 1s given by:

a(t) = Tote " (0,6 [e™dW, (1)

0

The inflation dynamics 1s the process of price level
dy, = P(mdt). In this world too, the instantaneous interest
rate, 1(t) was underwent stochastic process of Vasicek, its
dynamic given by Eq. 3:

dr(t) = k()Mo dW(t) 3)

and this affine term structure solution is:

r(t) = Tre* (G Drme™ e dW, 1 “4)

0

The bond pricing will be done in the manner of Eq. 4:
T
By (1, T, ) = &"[ [ —r(u)du — n(u)du]

+ %Vﬂft [j —r{w)du —a(u)du]

The bond 1s somewhat classified risky too due to
affected by stochastic interest rate as well asinflation rate
but won’t be default. The analysis gave its dynamics in
Eq. 5. The other analysis of bond pricing may refer to for
default-ableassets:

dB,(t.T,)
ENE AR AL
—[P(t, T)o dW.(t)]

—[Qt, T)o, dW, (t]]

)

with constant b (t, T ) is defined by Eq. &:

Gf Gi , e—K(T—t) efz K(T-t)
b(t,T) = { e } Laz } +0, {—KZ + o +

, e—m(T—t) e—Zm(T—t) (6)
Ol — T+ P +
o 200

T[2+2¢7 |47 2+ 277 |

P(LT,) = {10 (7

and:

1 —o(Tg—t
Q(t,TB):E(l—e ¢ )) (8)

Now that the trading strategies were embodied as
portion of risky asset, 6,(t) and portion of fixed-income
(risky bond), 6,(t) as we
6,(t)+0,(t) = 1. Our model allow short selling and
condition 6, ;0 are not necessary.

underline  constraint

Wealth dynamics and target function: The agent’s
wealth dynamics over investment period is outlined in
Eq. 9 for simplification some variables will be written
in short form without losing their generality:

dX(t)y |9, (h5u, dt
X(t) |[+0,().B(r+m+b)|
6,(1)8!a, dw, (9

+| -6,(0B,Po, ||dw,
-8, (1)B,Qo, || dW,

The related target/cost function in which comprised
by terminal cost was given by Eq. 10:

V(S;y)—E{U(&} (10)
W

while value function 1s supremum over the terminal wealth
with nflation effect which was described in following
Eq. 11:

V(s, y)=sup I(s, y, 1) {1

uch g

We would like to set wealth to be positive, X(t)20, for
every t=0, for the purpose of solvency conditions. We
must solve the Hamilton Jacobi Bellman equation given
Eq 12

Y, + sup Gt 7 WV, V,) = 0 (12)

uchyg

with G (t, z, u, V,, V,,) = L"V. Noting that our Stochastic
Differential Equation system problem which 1s not
satisfied the condition of lipschitz growth due to such two
unbounded processes met, 1.e., product of X(t) (t), etc.
Henceforth, we would like to adopt technique introduced
by altogether, with their proof of modified verification
technique for the sake of Stochastic Differential Equation
solution’s uniqueness
conditions. Proof is to comsult Korn and Kraft. The
Dykin’s operator is introduced by Eq. 13:

and existence of well-posed
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1
_ * T
Glt,zu V, V)= 2Tr[g (tZ.u )V, | (13)

+VITL Z,, 0,)

with g" = g.g” and g is the diffusion matrix, f is the drift
matrix of state space 7 = ( dXdSdr dn ). Later we have our
Hamilton Jacobi Bellman (HIB) equation as following
Eq. 14 where B=P’c,+Q’c; and Qir, o)=rtetb(t, T) is:

Bty szvﬂ(szvcsj + Bﬁf’)}t

0,(0{x"BPV_ +x87c’V_+

xB,(Po’V_+Qc.V )+
xV, (8w, ~B,Q(r. )+
[%szﬁﬁ.Vm + %S%j.vss + a4

1 1
—G V-GN, -

2 2

xB, (Pl V, + QoiV )+

V, +xB,Q(r,m).V, + St V, +

k(T -0V + @ —m).V,]=0

In which the subscribe in the V represented the partial
derivative with the respect to. By static Euler derivation
we obtained the candidate for optimal control in following
Eq 15:
xBIP.V_ -8V

XV, (S¥s 24BP)
By (Ps;V, +0s1V,)) (15)
xV_ (8%s?+BP
V. (8, “B,QCr p))
XV, (S¥s +BP)

8, (t)* =

Write our value function 1 the form of Eq. 16 (t, x, 1,
m,s)=alt, r, T s). In(x)+b(t, r, T, s). Direct substitution will
result to our system:

In(x) {a, +5u,.a,+k(r-r).a, talp-p)a, +

1 1 1
—8's’a +t—s ‘a_+—s i.app} +
2 27 2

b,+Su, b, +k(T-1).b, +a(p-p).b, + (16)

lSZYsi.bSS++lsf.bﬂ+lsi.b +
2 2 2 v

fit,r,p.s)=0

Where:

f(t,r,m, 8) = (B,Qr,m) —%Bﬁf’) +

[-BXP-Su, + BDQ(r, o
2.8+ BIP

We split our system mnto PDE I and PDE IL
Sub-system PDE I represented on following (Eq. 17)
would be solved as following Second Order Homogenous
case:

{a, S, a +k(r-r).a, +a(p-pla,+
(17)

1 1 1
ESZVGf.aSﬁESf.aH-&-ESi.a =0

g2

Meanwhile, the PDE II in Eq. 18 would be raised as
second order quasi-linear case:

B,(B1,+BI1B2, 1}, """, B, = B1B2e™""; (18)
— . _ BI()r _
B, =BIBZ; B, =B.e and B, =Bl e
Now we are interested to resolve PDE 1 that we can
define Eq. 19 as:
alt, r, m8)=clt, 1, T, ¥) (1 9)

with transformation in power form y = s -2y +2. We have
the partial derivative as follows:

a, =c,(-2y+2).87°"

— _ 2 v+l
a, =¢, (—2y+2)".37" +

¢, (=2 +2) (-2 +1).87

Hence, we got our system to become in Eq. 20:

Y{Ms(—zﬁ“f 2)c, + %S (27+2)c, }CW +

1.
ES S22y 2N 2y + Do, + (20)
¢, tkir —-r)c +am—mc_+

lsi.crr +lsi.cTDT =0
2

We defined the system into the linearisation process
that (Eq. 21) describes on following:

c(t, I, m, y)= A(t, 1, m) + B(t, 1, m).y (21)

Therefore, we will obtain our PDE as following
Eq. 22):
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{AHK(F—r).A, + T —T)AL +
L -

30 .A”.+%Gi.Am+

%og (-2y + 2)(~2y + 1)B} (22)

yIB; + k(T -n.B +a(m-m).B, +
1 1
EGE.BW + Ecr?c.B,m + U (-2y+2).B]=0

This PDE in Eq. 22 can be splited into upper and
lower row. We are interested to solve the lower one in
following Eq. 23 as we are narrowing down our system
mto:

B, +k{T-1).B, +a(§-p).Bp +

1 o

- (23)
EGF'B”+EGP'BPP  (-2y+2).B=0

and we define our ansats in Eq. 24 assuming that the PDE
is separable:

B(t, @, r) =BI(t, ©).e™"" 24
We again have the partial derivatives as follows:

B, =(Bl, + Blet_r)_eBZ(t) nB = BIRZ oB20r
Brr =BIB2%.e™"", B, = Blne™" and
B =B1 _eBr

Remind the boundary value we had; a(T, r, =, 8)
1,e(T,r,m,y)= LA(T,r,m) =1 and B(T, r, ®) = 0. Thus,
we had B1(T, 1) = 0 and B2(T) = 0. Direct substitution
gives us following system in Eq. 25:

r(BIB2, - kBIB2)+ Bl, +
1
(T —m).Bl, + +EG’2"B1““ +

(25)
KIB1B2 +u, (~2y + 2).B1 +

%dBmf:O

Our PDE will be meamngtully iffr (B1B2 t-k
B1B2) =0 and we solve for B2(t) in Eq. 26:

B2(t)=B2(T)e" ™" (26)

Applying boundary condition on B2(T) = 0 give us
B2(t)=0 as we solve the remamng from last PDE n
Eq 27:

- 1,
Bl +u(fi-m) Bl p+55 Bl + (27

W, (-2r+2)B1 =0

and we had B1{t, m) = B3(t).e B4(t).t with the same
pattern of partial derivatives from Eq. 28. Remind that our
boundary condition B1(T, 1) = 0 hence, B3(T) = 0 and
B4(T) = 0. The system 1s to become (Eq. 28):

n[B3B4, -aB3B4]+B3, +

u, (-2y+2).B3+anB3B4+ (28)
lsip3Ba =0
2

As usual we solve 1 (B3B4 t-¢ B3B4) = Oand get (Eq. 29):
BA(t) = B4(T).e“*" @9

as the boundary value been substituted we find that
B4(t) = 0. The remind parts of last PDE has already
reduced to Ordinary Differential Equation (ODE) in
(Eq. 30X

B3, + 1 (-2v+2).B3=0 (30)

The solution 13 B3(t) = B3(T).e (2y-2)u s(t-T)) and by
substituting our boundary we obtam B3(t) = 0 as
Bl(t, m) = B(t, r, ) = 0. For our big system we hence get
second order homogenous PDE on Eq. 31 which is
referring to Eq. 22:

A k(T 1) A +oT-mA +

1 1 (31)
oA+ A_=0
2 2
Written in the form Eq. 32:
Alt,r, ) = Al(t, w).e™ (32)
We will have following PDE m Eq. 33:
r[A1A2, —kKATAZ]+ AL +
Ot(E*T[).AlnwL%Gi.Aler (33)

- 1
krAlAZ + EcszlAQ2 =0

The boundary value A(T, r, 1) =1, Al(T,r, ®) =1 and
AZ(T, r, m) = 0, we resolve the r{AlA 2 t-k A1A2)=10
which gives us Eq. 34: we got A2(t) = 0. Now, solving Al
t+a@m Al w+1/207° Al in the form Al(t, ) = A3(t).
eAd(t). m, hence system in Eq. 34:

TA3A4 —aA3A4]+ A3, +
B 1 (34)
GTA3AL+ Eoi.AsAzﬁ =0
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We have meaningful PDE iff © (A3A4t-cA3A4) =0
and Ad(t) = Ad(T)ex (t-T). Set Ad (T)=0 we have
Ad4(t) = 0 and we had ODE in Eq. 35

A3 =0 (3%

t

which resulted as A3(t) = constant. We know that
A3(T) = 1 and hence must be A3(t) = 1 and so do
Al(t, m) =1 and A(t, 1, m) = 1 . From previous analysis our
linear system c(t, 1, ™, y) = A(t, r, T)+B(t, 1, 7).y and as
above mentioned results we have c(t, r, 7, v) =1 and so
a(t,r, m y)=1. And our trading solution of risky asset
can be directly infer by following Eq. 36:

- .

« P+ -

0 (ty = BuPTS1oBR (36)
%67 + BL.D

Now we are ready to establish our theorems:

Theorem 1: The optimal investment of risky asset trading
strategy, 0,(t) in which the risky asset dynamics
following Eq. 1 in the world that bond pricing analysis has
been conducted under the environment of stochastic
inflation rate in Eq. 2 and stochastic interest rate in Eq. 3
is acquired by:

. B:P+Sp -B,Q

g (=L —1=

0 $"s!+BLP
with constants and variables mentioned above.
Meanwhile the trading strategy for risky bond 18 given by:

0,(1)=1-6](1)

The risky asset trading solution is depending on
risky asset and risk-less asset characteristic. It is affected
by interest rate and inflation rate in opposite direction. It
is also shown contrast effect toward leverage effect and
risky asset volatility, carrying in the stock dynamics. This
is going by economic common logic.

RESULTS AND DISCUSSION

Benchmark; Merton Model: In this subsection we were
presenting the Merton Model for logarithmic utility
function. Without undergoing stochastic interest rate, the
risky bond will be the asset which gives sure return,
dB/B = r.dt. Meanwhile, the stock evolution follows the
standard geometric Browman motion in Eq. 1. We have 2
assets on this standardized model. Reader may refer to for
more general utility class function:

§=pdt+cde(t) (37)

The wealth process will be defined in Eq. 38 which
61M is the risky asset Merton’s trading strategy that later
will be the control function of our target function in

Eq. 38
ds dB

=X[r+ 6, (u-1)]dt + X[6,,5]dW(t)

Owr objective is to maximize the portfolio value
function given by Eq. 10 by taking supremum over the
expectation of utility of termimal wealth. Our chosen
benchmark utility fimetion 1s logarithmic which U(.) = log
(.). The value function should cbey the Hamilton JTacobi
Bellman of VHV +1/2g.V g = Oand we obtain following
Eq. 39

V, T (xn)V, +

GIM.x(u—r).VX (39)

1
efME(xcs)z.vxx =0

Using the same procedure we obtain the risky asset
trading solution for Merton’s problem for logarithmic
utility in Eq. 40 which A is the Sharpe reward to volatility
ratio, A = (p-r)o:

(u-T1) (40)

G2

. A
Ope =—
8]

and the trading solution for risk free asset given by:
B, =1-0y,

Comparative analysis to our risky asset trading
solution above. The Merton Model stated that risky asset
trading solution have positive correlation to Sharpe ratio
and conversely with volatility. We have our stochastic
interest rate, stochastic inflation rate and the leverage
degree of stock movement to be accounted in our trading
solution. The bigger uncertainty from interest rate and
inflation rate will reduce the portion of stock. Meanwhile,
the bigger retumn of risky asset will boost the decision for
stock belonging, directly mverse with volatility and
degree of leverage.

Simulation: We would like to do simulation m our
Indonesia emerging market JKSE with moenthly basis for
103 periods from June 2005 December 2013 but effectively
taken mto simulation from January 2007 October 2012 for
convenience purpose. The selected stock 13 PT. Telkom
(TLKM) as the government enterprise of Indonesia main
telecommumecation company enlisted as the 45 most liquid
ones. The Blue chip stock TLKM had best fit to CEV. The
inflation and mterest rate which were generated by Monte
Carlo simulation were accessed with Vasicek process. All
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Return Bond Versus Return Stock
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o2 e
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-2k Retwsm Bond | |
Retumn Stock
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x 107> Volatiliey of Stock & Bond Retumn
- - - - * - -
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» 2F i
-
2, |
__2 L [l i L L [l
20 30 40 S0 &0 70 80 a0
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Fig. 1: Return and volatility for stock and bond
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o 10" Weashk Prozess
<] 8 -
= | weath pr:rc:ss]
3 2k -
=
0 - 5 L L i i i
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Time Horzon

Fig. 2: Trading stragedy for optimal policy

of models above numerically convergent with Maximum
Likelihood Estimation (MLE) using free toolbox provided
by Sahalia and Kimmel. The return and volatility for each
stock and bond 1s given on Fig. 1. We can observe
directly that volatility for stock return 1s much more stable
than bond return because our bond is valued under

stochastic interest and inflation rates which we know that
in our emerging market are not stable too. Hence, we
cannot say that stock surely to be riskier than bond, at
least in this context. Meanwhile the trading strategy for
optimal policy shown in upper Fig. 2 as we strict the
0,(t)+0.(t) = 1. The investor is risk averse in our defined
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utility function, so although in some period the bond gave
higher return, she prefers to buy stock due to relatively
stable volatility and she did not mind to short sell the
bond. The wealth process during the nvestment period
given by lower Fig. 2 as we can see m the end of period

mvestor accumulated quadruple from her imitial wealth
(which is TDR 1.000.000) although for the first 20+ periods
she suffers losses.

CONCLUSION
Researchers improve the Merton model with
stochastic interest rate and stochastic inflation rates as
well as the consideration of leverage effect in stock
movement. The futire works may consist series of
improving these model that may mimics the real of market
condition, i.e., the consideration of proportional
transaction cost as well as the consider the risky assets
may undergo default condition. It 13 something that
needed to be serious accounted when we put our money
in the emerging market.
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