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Abstract: In graph based data mining, graph/subgraph isomorphism testing used in mining frequent subgraphs
plays key role and is time consuming. In a wide range of real applications, graph Isomorphism has significant
role m retrieving the isomorphic graphs from a set of graphs. Canonical labelling of the graph has major impact
on the efficiency of graph 1somorphism testing. In this study, an algorithm 13 proposed to find canonical
labelling in an efficient way and there by efficient isomorphism testing of labelled graphs. The proposed
algorithm reduces search space based on the symmetries present in the graph there by making computation
feasible to perform 1somorphism testing on large databases for pattern mimng,.
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INTRODUCTION

Graph mimning aims at extracting useful knowledge
from a large amount of structured data modelled as graphs
(Cook and Holder, 2006). Attributed/labelled graphs are
more appropriate to represent structured data as they
offer a powerful way for modelling data of manyscientific
and commercial applications (Gyssens et al, 1994;
Kumar et ai., 2000, Binucci et ai., 2005, Amuthavalli, 2010,
Frick et al., 1994). Labels of vertices and edges can
represent different attributes of entities and relations
among them. Labelled graphs have been used to address
the problems of shape analysis, chemical data analysis,
computational biology, social network analysis, web link
and document analysis and computer networks due to the
clarity in representation and efficient use in finding
solutions (Sander, 1999; Maio and Maltoni, 1996,
Zhou and Pe1, 2008, Deshpande et al., 2005, Chartrand
and Zhang, 2006; Koyuturk et al., 2004). Popular graph
mining algorithms based on graph theory based approach
are AGM (Apriori-based Graph Mming) (Inokuchi ef al.,
2003), F3G (Frequent sub-Graph discovery) (Washio and
Motoda, 2003; Kuramochi and Karypis, 2004), gSpan
(graph-based Substructure pattern mining) (Yan and
Han, 2002), FFSM (Fast Frequent Sub-graph Mining)
(Huan et al., 2003), etc.In order to extract knowledge from
graphs, frequent subgraphs are very basic ones that can
be discovered in a set of graphs that are useful at
analysing and characterizing graph data, discriminating
different groups of graphs, classifying and clustering

graphs and building graph indices (Wale and Karypis,
2007; Flake et al., 2004; Yan et af., 2004). Mining frequent
subgraphs (Bringmenn and Nyssen, 2008; Jin ef af., 2005)
15 a basic activity to find frequent subgraphs over a
collection of graphs in a graph database or from a large
single graph. The graph/subgraph isomorphism testing
plays key role in the process of frequent subgraph
(pattern) mimng (Cordella et al, 2004). A graph
1somorphism 1s a classic P or NP complete (Garey and
Jhonson, 1979) problem in finding frequent
graphs/subgraphs in graph mining. There are different
approaches to solve the problem of finding isomorphisms
of a general graph (Gross and Yellen, 2004), however
most practical algorithms available in the literature are
sub-divisible mto two different categories. The
algorithms i the first category proceed directly by
taking the two graphs to be compared for
isomorphism and try to find a match between them. These
algorithms proceed by using a depth-first backtracking
(Cordella et af, 2004; Ullmam, 1976) and by using
heuristics to reduce the size of the search tree. On the
other hand, the algorithms m the second category
proceed by considering one graph at a time. These
algorithms take a single graph, say Gand compute a
function Cl (&) which returns a certificate or a canonical
label of the graph. Canonical labelling of a graph consists
of assigning a umque label to a graph such that the label
1s invariant under isomorphism. After obtaimng the
canonical label for each graph the isomorphism can be
found by comparing the canonical labels. These two
classes of algorithms, even though they differ in the way

Corresponding Author: D. Kavitha, PVPSIT, Vijayawada, Andhra Pradesh, India

1586



J. Eng. Applied Sci., 11 (7): 1586-1597, 2016

they solve the isomorphism problem, make use of
mvariants. Practical applications of graph 1somorphism
testing do not confine to checking the individual pairs of
graph. Often one must decide whether a certain graph 1s
isomorphic to any of collection of graphs or one has a
collection of graphs and needs to identify isomorphism
classes in it. Such applications are not well served by the
algorithms that can test graphs in pairs only.

The challenges that arise m the second category of
1somorphism testing are canonical labelling and symmetry
(automorphism) detection. Tdentifying canonical label
itself is exponential. If a graph has |V| vertices, the
complexity of determining canonical label of a graph is
O( VD). Symmetry is a permutation of the graph's vertices
that preserves the graph's edge relation. The symmetries
of a graph map each labelling to another labelling. If all
symmetries are extracted it may be sufficient to visit only
one labelling from each equivalence class. This main
feature is being exploredin this study is to eliminate the
permutation computations involved in canomzation.

Lots of well-known 1somorphism test algorithms were
developed (Ullmann, 1976) proposed a backtracking
method that significantly reduces the size of the search
tree and 1t 1s still one of the popular algorithm for exact
graph matching (Foggia ez al., 2001). Another (sub)graph
isomorphism algorithm VF2 proposed by Cordell et al.
(2004),also based on Depth-first Search (DFS) strategy,
employed some feasibility rules that prune unpromising
vertex pairs in the search space. VF2 is more efficient,
especially for large graph sizes. VF2 as well as Ullmann,
both can work efficiently for large labelled graphs with
and without imposing any restrictions on the graph
structure. The major drawback of these algorithms is that
these algorithms are slow when the graphs being tested
have many automorphisms, since they do not detect them.
Conauto is an another direct algorithm tries to find a
mapping between the two graphs using backtracking and
prune the search tree using automorphisms in the graphs
like canonical labelling algorithms process but without
necessarily computing the whole automorphism group.
All these algorithms are confined to check isomorphism
for the individual pairs of graphs.

Coming to another category of graph isomorphism
algorithms that uses canonical label to test the graph
1somorphism. Babai and Kucera (1979) proposed a fast
algorithm to compute cancnical forms of general graphs
in exp(nl/2+O(1) time. The most powerful algorithm
currently available 15 McKay’s Nauty  package
(McKay and Piperno, 2014) which is considered to be the
first practical algorithm that employ the idea of Babai.
Even it 1s one of the fastest graph 1somorphism algorithm,
it takes exponential time for some categories of groups.
Furthermore, NAUTY does not allow graphs to have
labels; hence 1t 1s not applicable to labelled graphs.

An alternative methods such as FSG (Kuramochi and
Karypis, 2004) and minimum DFS (Yan and Han, 2002)
canomical code are popular in frequent graph/subgraph
mining. The FSG combines several types of vertex
invariants to partition the vertices into equivalence
classes. If the vertices of a graph with n vertices are
partitioned mto ¢ classes m, T,,...,T,, then the mumber of
different permutations need to be considered in order to
find that the canonical code is IT; = 1 ~ c(|n]!) which is
substantially faster than the n! Permutations required by
the earlier approaches (Yan and Han, 2002) proposed a
canonical labeling named DFS Lexicographic Order that
searches a graph using Depth-first Search (DFS) strategy,
they traverse the graphs and label them canonically with
the mimmum DFS3 code. Then, after extracting these codes
and filtering them, mstead of GED measurements, they
used Levenshtein distance (i.e., string edit distance, SED)
to measure the similarity between two graphs i.e., between
the source graph and graphs in database. This 1s used in
frequent subgraph mining algorithm gSpan.

Definition 1: A labelled graph is defined as quadruple
G=(V,E, L, LF), where V is a set of vertices EcV=xV is a
set of edges, L 13 a set of labels and LF 1s a fimctionthat
gives a unique label to each vertex of G. Given two
labelled graphs G = (V, E,L,LF) and G = (V', B, L', LF"), we
say that G is isomorphic to G', written” G = &, if there
exists a byjection £: V-V', called 1somorphism such that:

1. ¥ (u, v)eE=(f(u), f(v))cE
2. ¥ veV, Liv) =L'f(v))

Definition 2: A canonical labelling of graph G is said to be
an isomorphism-invariant labelling of G’svertices, i.e., two
graphs G and G° have the same canonical labelling if and
only if they areisomorphic to each other A function C:
G-G is a canonical form iff:

(1) YGeG: C(G)=G
(i) Y3, G'eG: G=G'=C(3) = C(G"

Formally, given a class K of graphs which is closed
under isomorphism, a canonical labelling algorithm
assigns a urmque label to each graph in K, m such a way
that two graphs in K are isomorphic if and only if the
obtained labelsof graphs coincide. One way to define a
canonical isomorphism function is to specify a total order
on graphs with n vertices. The ordering 1s a lexicographic
total order induced by a fixed total ordering on.
Unfortunately Chas the drawback of being difficult to
compute. Typically there is no alternative to checking
essentially every permutation of the vertices to see
whether it produces the graph that is than greatest. One
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reason for the weakness of this sort of approach is that it
does not exploit any graph theoretical information. One
starting point might be to have vertices m the canonical
1somorph appear in mcreasing order of degree. But
starting label withsmallest degree vertices requires more
complex computation as they are large in number m a
general graph and computation of automorphism at this
level is quiet complex and of less use. So, this algorithm
starts its canonical label with highest degree vertices.
With regarding this, the vertices of a labelled graph are
partitioned with the properties as defined in definition 3.
Clearly this is not sufficient to determine the canonical
1somorph. However, this local information can then be
propegated around the graph. For instance, if there 1s a
unique vertex vof some particular degree, then the
neighbours of vean be distinguished from the non-
neighbours.  Iterating  tlis  idea, the
neighbourhood of vean then be distinguished and so on.
To do so,the vertex invariant properties such as degree,
label of vertex, edge relationships between vertices, label
of edges, neighbours to identify symmetry etc. areused
and defined in the following definitions.

second

Definition 3: The vertices of a labelled graph G are
partitioned intopdisjoint non empty sub sets denoted by,
an ordered partition T(G) = {m,, m,,..., 7 } 1f, satisfies the
following properties:

(1) For all vertex u, v emy, (@), deg (u) = deg (v), Vi,v € T,
(@) 1<kep

(2) Forall vertex p e, (3) and v em, (G), deg (u) >deg(v) if
k<1

Definition 4: Let be an equitable ordered partition of n
vertices with a nontrivialpart 1, the equitable refinement
R(m;) of the ordered partition (m;) is R(m;) = my, W5, ..., Tie
if satisfies the following properties:

(1) For all vertexu, u, vem,(G), Ibl(u) = 1bl (v)¥p,v em, (3),
1<kec

(2) For all vertex p emn,, (m,), vemy(m,), Ibl(p), <1bl (v), if
a<b

Definition 5: The set of symmetries of G forms a group
under functional composition and is called the symmetry
group of G and is denoted by Sym (G). An automorphism
(a symmetry) of graph G is a permutation of G's vertices
that preserves ('s edge relation, i.e, G = G. The
automorphism group Aut(G) of a graph G is theset of all
automorphisms of G with permutation composition as
group operation.

Lemma 1: A graph G is vertex-transitive if for every vertex
pair u,v €V, there 1s an automorphism that maps u to v.

Lemma 2: A graph G is edge-transitive if for every edge
pair d,e €E,, there 1s an automorphism that maps d to e.
Vertex orbits are the equivalence classes of the
vertices of a graph G identified by the automorphism. The
equivalence classes of the edges are called edge orbits.

All vertices in the same orbit have the exact same
degree, label and neighbours All edges n the same orbit
have the same pair of degreesat their endpoints.
Anautomorphism of graph G is a structure-preserving
permutation onV along with a (consistent) permutation vy
on B, . We may writey,,v: The adjacency set of a vertex
v of a graph g, denoted as adj (v) is a set of vertices
directly connected (adjacent) to v.

Definition 6; vertex triplet: For a vertex v with madjacent
vertices u;, W, ..., W, vertex tripletTri (v) is a string
defined as: dsig, Isig,. esig, where “+7 is string
concatenation and which satisfies the following criteria:

(1) For each ves, dsig, = (d{u,), d(w,), ..., d(u,)) where deg
{(u,) = deg (Ug.y), forallk, 1<k<m-1

(2) For each ve s, Isig,= (1(u,)]] I(u,)]|... |[i(u,)) where 1 is
the in the order of dsig,

(3) For each veS, a sequence esig, = (1(u, v)|| l(u ;v)|...
|[1(u,, v)) where u;1s the i the order of dsig,

Therefore, the triplet of vertex v with m adjacent
vertices is composed of the triples in the form of adjacent
vertices degree (dsig,), adjacent vertices label (lsig,) and
adjacent vertices edge label (esig,). These triples are
ordered first by vertices degree, then by vertexlabels and
then by edge labels. Notice that the vertex triplet 1s not
obtained by calculating all possiblepermutations; it is
attained by sorting the degrees of adjacent vertices as
described 1n the above defimition 6 rule 1. And then
adjacent vertices label and adjacent vertices edge label are
obtamed just by concatenating the labels in the order of
vertices obtained with rule 1. The intention behind the
design of vertextriplet 1s to combine the degree, label and
the edge label of adjacent vertices information of a
vertex into a string-based representation. Therefore, the
lexicographic order of vertex triplets is totally ordered as
normal strings.

Lemma 1: Given two vertex triplets Tri(v,) and Tr1 (v,) of
vertices v, and v, of a labelled graph G, respectively, v, is
not symmetric to v, 1if Tr1 (v)= T (v,).

Proof: We prove this lemma by showing that if v, 1s
symmetric to v, then Tri (v,) = Tri (v,). Since, v,v,, there
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exists abijection f that maps each adjacent vertex v, of v,
to a vertex f{(v;), namely w,, of v,. Otherwise, the adjacency
relations preservations such as adjacent vertex degrees,
vertex labels and edge labels must be violated between
these twovertices. Since the lexicographic order of
adjacent vertices relationships are totally ordered and the
triplet of a vertex 1s the stringobtained by concatenation,
these two vertex triplets must be equal. Notice that Temma
Istates a necessary condition to identify symmetry
between two vertices. This symmetry property of vertices
can be used to avoid permutation when generating
canonical label of a graph that have symmetrical vertices.

The mam difference between the proposed algorithm
and previous works ( Ullmann, 1976; McKay and Pipermno,
2014) 1s that the search tree of those works 15 global, 1.e.,
the backtracking of the entire matching process may cross
the boundaries of partition classes such that the maximal
number of nodes mn this global search tree becomes the
product of all the possible matching enumerations within
each partition class. In this algorithm, search space exists
locally for the vertices that correspond to a single
partition class and there 13 no backtrackingsand further
the automorphism property i1s used to elinmate the
permutation computations.

MATERIALS AND METHODS

The proposed method: In this study, a new algorithm
Fast-CT. (Fast Graph Isomorphism testing for graph based
data mining with improved canonical labelling) 1s
proposed to perform the isomorphism testing of simple
labelled graphs based on the canonical label. Our
algorithm makes use of invanant properties of labelled
graphs tofind symmetries in the graph and to improve the
overall performance. The key features of the proposed
algorithm are as follows:

*  This algorithm does not use backtrack to traverse the
search space

¢ Starts labelling with higher degree vertices to reduce
complexity involved in computation of permutations
required to construct canonical label and to use
automorphisms efficiently i label construction

¢+ FEncodes the vertex invariants label, degree and
adjacentvertices into vertex triplet and use of
adjacency lists to find symmetry

*  Narrows down the search space that reduces the time
needed for constructing canomnical label by using
symmetries in a graph

* Automorphisms of graph G determmed at non
terminal nodes are used to get rid of permutations

Construction of canonical label: The canonical label of a
graph Cl(G) 1s defined to be a umque code (e.g., string)
that 13 mvariant on the ordering of the vertices and edges
in the graph.lt cen be the smallest or the largest
stringobtained by concatenating all the vertex labels
followed by the columns of the upper triangular entries of
the adjacency matricesover all possible permutations of
vertices.

In order to reduce the number of possible
permutations, vertex invariants are used. Vertex invariants
are some inherent properties of the vertices that
arepreserved across isomorphism mappings such as
vertex labels and degrees. Vertices with the same values
of the vertex invariantsare partitioned into the same
equivalence partitions. If the vertices of a graph are
partiticned into p partitions T, T;,....T,, the amount of all
possible codes need to be generated in order to obtain the
canonical one is O(Ili = 1 ~ p{|r;!)) by Kuramochi and
Karypis (2004).

Here 15 the basic algonthm to generate canonical label
of a graph G. It 18 basically based on theequivalence
partitioning of vertices with the added optimization that
refine each part before going to next one. This
algorithmcomputes the vIbl as the first step in canonical
code construction which is in turn used to construct
elbland canomnical code.

Algorithm

Input: A labelled graph G

Qutput: Canonical label of a graph G-C1(G)

Begin

1. (m,m,....m,) /*Make ordered partition IT (G)*/
2. p-(G)| /* Letp be the number of vertex parts of
3. fori=1topdo

4. If (=)

5. vibl-vlbl|jv () /*vlblconstruction®/
6. else if{|m|=1)

7. refine partition{m;)

8. endfor

9. forj=2tondo

10. fork=1tondo
11. wevevibl

12, vy vevlbl

13, if (v, v) € B(G)
14. elbl-elbl |[1(w, v)
15. elseelbl elbl| O
16. end for

17. end for

18. clbl~vlbl |Jelbl

This is the algorithm to construct the canonical label
of a graph CI{G).The first step is to identify the vertex
label vIblthat contains labels of vertices as a string in the
order of vertices such that the canonical label is
lexicographically small/high.  String obtained by
concatenating the columns of the upper triangular entries
of the adjacency matrix was referred as elbl. Canonical
label be a string that was obtained by concatenating v1bl
and elbl.
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In stepl, predefined vertex invariant, degree of the
vertex is used to create an initial orderedpartition (I1I) of
the vertices of the graph G mto p parts as stated in
defimition 3. A trivial part is a part of size one. If the
ordered partition (II) contains discrete and trivial parts,
append the elements of each part to the vlbl in the order
of partitioning done as vertices in different parts of have
already been distinguished from each other with the
properties as stated in definition 3. Tn the usual canonical
labelling procedure, permutation of vertices is used to get
the order of vertices of a non-trivial part. To reduce the
complexity n computation involved m finding all possible
permutations of identical vertices inside p parts, an
algorithmrefine partition () is developed that further
refines each part using vertex mvariants and edge
relations. Step 3-8 m the algorith mdefine this process and
is the first step of canonical label construction. This
vields a vlbl string that is enough to construct canonical
label of graph without permutations.

Step 9-15 constructs edge label based on the order of
vertices of constructed vlbl and edge relations between
them i.e. second step of labelling. Obtain the canonical
label of graph Cl (G) by concatenating the string vibl
followed by the string elbl.

Refinement using vertex invariants: In the remainder of
this section, the procedurerefine partition() used to refine
an equitable partition 18 presented. The procedure
acceptsan ordered part as input and returns
refinedclasses m,, T, .... T, of w,. These classes T are
further distinguished wusing automorphismproperty
present i the class.

Tnitially, the main algorithmstarted by forming
anequitable ordered partition of vertices, thereby
extracting all the degree information. The children of an
equitable ordered partiton in the search tree do not
correspond to all possible splittings of . In order to
distinguish verticesof m; and to find the symmetry, other
graph theoreticalinformationsuch as label of vertex and
edge relations between vertices are exploited. The
definition 4 describes the way to identify these
distinctions thus to make further partition refinement. At
each stage, the first non-trivial partof 7 1s chosen to split.
We record in the search tree not only the current
equitable ordered partition but also the sequence of
vertices used for splitting.

Algorithm: Refine partition ()

Input: A partition of graph ((G))

Output: Refined partition

C~Connected set of vertices in a class m,to the vertexof vibl
UC-Uncomnected set of vertices in a class d;to the vertexof vibl
BRegin

1. Make minto classes T, Tg.... 7 based onL (¥) inm;

2 TTT, M. ... T
3. for each class m; inm; do

4. if class mis singleton

5. add operand v ofm; to vibl
[ else if vIbl is null

7. find_symmetry(ry)

8

else
9, for each vertex v, inm; do
10. for each vertex v,invibldo
11. it L. (va,vh) eE
12 C-CUv,
13. else
14. UcucUv,
15. end if
16. end for
17. end for
18 end if
19. it UC is singleton
20. add operand UC, of UC to vibl
21. else if [UC|> 1
22 find_symmetry (UC)
23, endif
24.  refine_connected(C)
25. end for
end

Vertices in different parts II of have already been
distinguished from each other with the properties as
stated in defimtion 3 butnot the vertices in the same
part . In labelling computation to discard numerous
permutation possibilities in each part m;, refine partition
() algorithm mvokes partition refinement to propagate the
constraints of the graph, i.e., the graphs vertex degrees,
vertex labels, edge labels and edge relations. Step 1
classifies each part m, into classes m,,, T, .... T, based on
the label of verticesIf the classes are discrete and
singleton, append the vertices of the classes to the vlbl in
the order of partitioning. Divide the vertices in a
non-singleton ¢lass  into  Unconnected (UC) and
Connected (C) set of vertices based on the edge relations
between the vertices of the class to the vertices in the v1bl
till constructed as the edge relation with the vertices in
the viblhas profound influence on the canonical label. Tt
15 important to employ well-devised data structures for
performing the computation ofdifferent set of vertices that
have different properties, Data structures UC and C are
designed tomamtain list of connected and unconnected
vertices that are resultant of first level of refinement and
make available for further refinement of vertices of each
class 7, Ccomprises set of vertices that have edge
relations with the vertices of vIbl constructed till and UC
contains that haven’t. As the result of step 6-16, if the
number of elements in the uncomected set UC 1s one,
there is no scope for further refinement and hence append
the element of UC set to vlbl The elements in
thenon-singleton set needs to be explored to find
automorphism. The algorithmfind symmetry () is used to
find automorphisms between set of vertices. Vertices of
connected set CS are refined and added to vlbl by
invoking the algorithm refine connected ().
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Automorphism discovery: The identification of
automorphic groups and using them in elimmating the
permutations is the significant step employed in this
algorithm. Nauty recognizes an automorphism if two
different leaf partitions result in the same adjacency
matrix after relabeling the vertices (McKay and Pipemo,
201 4). Thefind symmetry () algorithm differs with Nauty
i recognising and using symmetriesthat may appear both
at leaf and non-leaf terminals that areinferred from triplet
of vertices and edge relations 1.e., structure of the
partitionwhich results same adjacency matrix.

Algorithm: find symmetry( )

Input: A set of vertices

Output: Symmetric group

UCset of vertices in an orbit to discover automorphism
S~set of adjacent vertices to a vertex we UC

RU-set of vertices need to refine

begin
for each v € Ucdo
S adj(v)
compute Tri, (dsig, lsig, esig,)
end for
split UC into number of subsetsU;, U, Uy for all vieUyand Tri,;
Tri,;
for each Ujdo
if (Uiis singleton)
append the vertex v to vibl
else
compute auto(U)
append any of the vertex from U; to vibl
if (Ujis singleton)
append the vertex v Ujto vibl
else
refine (Uy)
end if
end for
return
end

Let adj (v) returns the list of neighbours of v that are in
the set S, we could then define a symmetry function As
stated in definition 6, for each vertex compute vertex
tripletTri, which comprises three parts dsig, lsig, esig.
String dsig is the sorted order of degrees of its adjacent
vertices, string 1sig 1s the corresponding labelsof adjacent
vertices and string esig is the respective edge labels.
Finding this triplet 1s itself time consuming process. While
constructing the adjacency list in this algorithm, adjacent
vertices are added to the list in the required sorted order
as per definition & and hencein this algorithm time
complexity 1s reduced. Subsequently the amount of work
required to compute automorphisms is reduced. After
finding Tr1,, splitting the vertices mto subsets based on
automorphism and appending vertices of subsets to viblis
same as explained i the above algorithms. The algorithm
refine() is used to find edge relations for the set of
vertices that are m automorphic group and
refine_connected() algorithm is used to append vertices
that have edge relation with vertices of vibl.

Compute_auto() verifies the preservations of actual
adjacent vertices for the vertices of Uand assures the
complete automorphism by checking the symmetry of
adjacent neighbour vertices of automorphic groups.

Algorithm: compute auto( )
Input: a set of vertices U,
OQutput: automorphic vertices groups U,
begin
for each winU,; do
find l(v)based on edge relation with the vertices

end for

split U; into sub sets U, Uy,...U,based on edge relations
return
end

Algorithm: Refine( )
Input: a set of vertices C
Output: Append vertices to vIbl otherwise proceed to refine_connected ()
algorithm
begin
for each win Ru do
find edge relation with the vertices of vibl
it (no edge relation)

append to vibl
else
set status of u
append to Cu
end for
refine_connected(Cu)
return
end

Algorithm: refine_connected()
Input: a set of connected vertices CS
Qutput: Append vertices to vibl otherwise proceed to find auto () algorithm
begin
while (C8 is not ermpty)

set status of v,

split C into sub sets C;,C,,...Chased on status

if (CJ=1)

find_auto(C;)

else
appendv,of Cito vibl
end while
return
end
Vertex mdividualization 1s an important task m a
symmetrical  group.  Compute auto()  algorithm

substantiates find symmetry() algorithm in individualizing
vertices in a symmetrical groupusing the vertex transitive
and edge transitive properties of symmetry. Generally, the
individualization of a vertex comresponds to select a
subgroup of permutations in fixing that vertex which was
avoided in this algorithm. What would be the next node in
the vlbl is selected based on the local properties of
adjacencies of nodes and these are algorithmised in refine
( yand refine_connected ().
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Fig. 2: Finding canonical label using adjacency matrix

Canonical label construction using the knowledge of
symmetry: This section presents the behaviour of the
proposed algorithm for unique code construction of graph
G shown in Fig. 1. Let G be the graph with 10 vertices and
13 edges. Siumple way of defiming the canonical label of a
graph 1s to obtain the string by concatenating the upper
triangular entries of the graph’s adjacency matrix when
this matrix has been symmetrically permuted so that this
string becomes the lexicographically largest (or smallest)
over the strings that can be obtained from all such
permutations. Two permutations of its adjacency matrices
are illustrated in Fig. 2 a, b leads to its canonical label
“aabbbbeeddx0x 0 000x000x0000:x 0x 000000y 0000000
000000™,

In this code, “aabbbbccdd” is obtained by
concatenating the vertex-labels in the order that they
appear m the adjacency matrix and
*x0x 02 000x 000x 0000 0x 0x 00000y 00000y 000000007 15
obtained by concatenating the columns of the upper
triangular portion of the matrix. If a graph has |V| vertices,
the complexity of determining its canonical label using
this scheme 18 m O(|V]!) Le., 10! making it impractical even
for moderate size graphs. Even the FSG algorithm requires
(2IX41X21X21) permutations to compute canonical label
for labelled graphs.

The typical behaviour of algorithm 1s exemplified n
Fig. 3. Comng to Fast-CL’s algorithm, code construction
of graph G starts by forming the equitable partitioning
(using algorithm 1), thereby extracting all of the initial
degree mformation. For graph G, the equitable partitioming

15 shown mn step 1. Having extracted an equitable
partition, apply further refinement to split the non-trivial
parts. At each stage, nontrivial parts are chosen to further
refine in the order of partitioning done. An algorithm
refine partition() 1s applied on the first non-trivial part ;.
As labels of nodes 7 and 8 are same, find symmetry ()
algorithm 1s mvoked and 8|7 18 the order of vertices (by
computing Tr1,) , then edge connectivity with v1bl vertices
information is used in next refinement as edge relation
with vibl vertices results bigger code than that hasn’t.
Symmetry checking 1s used as the last step m the
refinement process to 1dentify symmetrical vertices. In the
above graph (G), the vertices 7 and 8 in the partition T
are distinguished at this stage and ordered as 8, 7 in vibl.
Coming to refinement of next part 1, nodes 2 and 10 are
comnected to node 8 and nodes 4 and 5 are conmected to
7. As nodes 2 and 10 connected to node 8 the first node
of vIbl, nodes 5 and 4 obtain higher priority to refine and
got the next positions as 8|7|54. The remaiung nodes of
this part are automorphic and takes either order 2|10 or
102, The nodes in other parts are refined in the same
manner and the vIbl order for the graph G is
87)5|4|2/10|1|3/6/9 1.e., aabbbbeedd and the canomical label
1saabbbbeeddx 0x Oxxx000x000x 0000xx 0x 000000y 00000y
0000000,

Graph isomorphism testingusing fast-CL: Let’s test the
performance of the algorithm to 1dentify 1somorphic and
non-isomorphic graphs shown in Fig 4. The ordered
partitions of G, are (1 4| 2 3). As vertices 1 and 4 of part &,
are symmetrical the vlbl order may be either 14 or 41. The
same appeared for nodes 2 and 3 when refining part m,. So
the constructed vlblfor Gis 1423, ie., aabb leads to
canomnical label aabbxocxx. For the graph G, the ordered
partitions are (1 3|2 4) and by refining the partitions we got
the v1bl1324 and canonical label aabbxeoooo:. Coming to the
graph G, the ordered partitions are (1 4| 2 3) and the
viblorder after refinement of m, is 14 as the node 1 has
esig, xxx and node 4 has xxy. The same applied for
refinement of m, and finally the label of graph G 13
aabbxxxxyx. By comparing the labels, we can observe that
graphs G, and G, are isomorphic graphs and graph G s
non-isomorphic graph.

Time complexity analysis: The time needed for Algorithm
1 15 the time needed for making ordered partitoning . In
algorithm refine partition (), the time required to make
refinement of parts 1e., to make classes and to add
vertices to the vlbl is O (m;). The dominating part is
finding symmetric groups using find symmetry () and
compute_auto() algorithms. In these routines, the
complexity mvolved in computing the signature Tr1, for
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Fig. 3: Generation of vertex label using Fast-CL algorithm for the graph G

1 2
b

Fig. 4: Test for graph isomorphism

each vertex m a class was avolded at the time of graph
construction by representing graph as an ordered
adjacency list. In other algorithms finding edge relations
and arranging them in an order requires order of the
elements in a set. So the time needed to compute order of
vertices for each part is O(m;) and hence the time needed
to compute v1bl is O ().

The proposed method will produce the same
canonical code for all 1somorphic graphs and different
canonical codes for non-isomorphic graphs. The
presented algorithm can also be used to find isomorphism
between pairs of graphs by comparing the partitions and
v1bl resulted at each step.

RESULTS AND DISCUSSION

Experimental results: Fast graph 1somorphism testing for
graph based data miming with improved canonical
Labellingimplements a general purpose algorithm aimed at
reducing the search space associatedin constructing
canonical label with the knowledge of the automorphism
group of a graph. Fast-CL was implemented in C language.
The experiments were carried out on a Tntel® Pentium®
Dual CPU T3400 @ 217 GHzwith 4GB RAM. A
comprehensive performance study has been conducted in

experiments on both synthetic and real world data sets.
Synthetic graphs are selected from the library of
benchmarks (Santo et al., 2003). These are randomly
connected graphs that each vertex pair has a probability
of 1 that characterizes the density of the graphs. A graph
with n vertices has n'n edges,and each vertex has nm
connected edges in average. In Fig. 4, the results obtained
on randomly connected graphs are presented using two
distinct values for the parameter 7.

The plots show the average execution time (in
seconds) as a function of the number of nodes. By
observing the results of Fig. 5a and b, dense graphs
required little bit of much time. However the tune required
to compute canomnical label of graphs 1s considerably very
less. To evaluate the performance on real datasets, we
used the data sets in a standard graph library available at.
Tt provides information on the anti-cancer screen tests
with different cancer cell lines. Each dataset belongs to a
certain type of cancer screen with the outcome active or
mnactive. The dataset 1s sparse, contaiming 66 vertices
types and four types of edges. The largest graph has 214
vertices and 214 edges, on an average 43 vertices and 45
edges. Tests are conducted on Yeast and MCF-7 graphs.
This dataset is useful to evaluate the heuristics of
symmetry for eliminating permutations during label
computation (Fig. 6).
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Fig. 7: Canonical label computation on aviation data

Aviation (ailab.wsu.edu/subdue). This  dataset
contains a list of records extracted from the aviation
safety reporting system database. FHach record
corresponds to an event and information is represented
by a graph having two typesof nodes and edges. The first
type of nodes represents the events (and are labeled with
the 1ds of the event) wlile the second represents
mformation regarding event. Aviation consists ofl 00K
nodes and 133 K edges. Note that Aviation is a
fundamentally different dataset when compared with the
previous ones. TheAviation graph has on average one
edge per node, thus, it 1s verysparse. Also it has a very
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large number of distinct node labels. Directed edges are
converted into undirected and experiments are conducted
on randomly sampled parts of graph and results are
plotted 1n Fig. 7. The performance of the algorithm has
been evaluated on multiple instances of graphs from the
above defined data sets. Observe that there are no
significant differences in the execution times for different
cases. The algorithm 1s fast and consistent for different
families of graphs. In order to verify the effectiveness of
theproposed algorithm on set of graphs,the experiments
are conducted on MCF-7 database that has nearly 40 K
graphs. The graphs are randomly chosen from the active
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Fig. 9: Performance evaluation for testing 1somorphism; a) random comected graphs 1 = 0.01; b) randomly connected

graphs 1 = 0.1; ¢) active and d) inactive

and inactive sets. The time required to compute canonical
label of set of graphs on MCF-7 database graphs is
shown in Fig. 8. The compound datasets used in the
experiments are useful in characterizing the effectiveness
of heuristics tofind symmetry and thus to elimmate
permutations in canonical label computation.

The average time required to perform isomorphism
testing on pairs of randomly connected graphs is shown
i Fig. 9a and b. Finally, to verify the effectiveness of the
proposed algorithm on set of graphs as the main focus of
the algorithm is to conduct isomorphism testing on a set
of graphs, the experiments are conducted on MCF-7
database plotted in Fig. 9¢, d. From the results of Fig. 9, it
appears that the proposed algorithm is more converent
to perform isomorphism testing on set of graphs. Observe
that the proposed algorithm is fast and consistent to
perform isomorphism testing on labelled graphs of
different families.

CONCLUSION

The emphasis of proposed algorithm is to provide an
efficient canonical labelling for labelled graphs thus make
available to perform fast and proficient 1somorphism
testing for a set of graphs in a graph database.

The results obtained in preliminary tests confirmed
the effectiveness of the proposed approach. The
algorithm is able to construct canonical label without
using permutations for labelled graphs that have
automorphisms.

The algorithm can also be applied to unlabelled
graphs as considering the label of all vertices and
edges as single. This algorithm can also be modified to
find isomorphism between a pair of graphs just by
comparing the results at each and every step of our

algorithm.
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