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Abstract: Derivation of nonlinear synchronous generator excitation controllers for improving power system
stability 1s described m this paper. These controllers are based on the existing umversal Higher-Order Sliding
Mode control Structure (HSMCS), furnishing the system with robustness quality in the presence of
disturbance. A significant aspect of the paper is the modification of the HSMCS for enhanced system dynamic
performance and better robustness. The parameters of the controllers are carefully selected by simulation using
MATLAB® software and various results showing system performance under network fault conditions are
presented. The results show the ability of the modified controller to withstand longer fault durations of 14.7 and
14.5 cycles for a three-phase symmetrical fault located at an infinite bus and generator terminal, respectively.
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INTRODUCTION

Electric power systems are complex and highly
non-linear with response characteristics that are a
function of the behavior of a number of its components
(Kundur et al., 2004). Tt is very desirable that they operate
at all times with high security and reliability in order to
meet the consumer demands that they serve, particularly,
in a deregulated large-scale power system environment, it
is of paramount importance that the power system has the
ability to meet stringent performance requirements which
arise as an upshot of, among other things, stressed
operating conditions and uncertain power flow paths
(Chow et al., 2005). Chief among the security and
reliability criteria of electric power networks 1s stability
which 15 a dynamic attribute that has to be ensured and
maintained before the operation of any power system can
be considered satisfactory. Practically, generating unit
controllers such as the prime mover and excitation
systems are bemng employed in the power systems,
besides the power and voltage controllers at transmission
and distribution levels, not only to realize safe operation
of an electric power system, but also to enhance system
dynamic performance (Mariani and Murthy, 1997).
Specifically, the generating umt excitation control system
plays a pivotal role in enhancing systems stability and
dynamic response to major network disturbances. And,
conventionally, the combination of an Automatic Voltage
Regulator (AVR) and a Power System Stabilizer (PSS) are
used to provide constant output voltage and damp
low-frequency oscillations in power systems (Steinmetz,

1920). But because their structures are linear, the AVR and
PSS have limited dynamic responses (Ortega et al., 2005).
In the literature, several configurations of the PSS are
available to provide positive damping torque to improve
the overall generator rotor damping (Mello et al., 1978;
Ghandakly and Farhoud, 1992; Trving et al, 1979;
Kasturi and Doraraju, 1970; Kundur et al, 1989,
Larsen and Swann, 1981; Lim and Elangovan, 1985).
Also, these various PSS forms are generally based on the
use of control design methods with underlying linearized
models of the power systems considered. So improving
power system stability by damping electromechamcal
oscillations using these PSS arrangements and other
similar ones (Fallkmer and Heck, 1995; Magid ef al., 1999)
has been found to be limited due to the highly nonlinear
nature of the system (Chiang, 2011). In furtherance of
alternative control strategies for better stabilization of
electric power systems, this paper considers a universal
high-order sliding mode control structure which is
appropriately tuned to damp oscillations due to network
disturbance and give improved stability and overall
dynamic response. An advantage of this structure is that
it preserves the nonlinear nature of the power system and
a sigmficant aspect of the paper 1s the modification of the
structure for enhanced system dynamic performance and
better robustness.

MATERIALS AND METHODS

Power system model: The model of the power system
network considered in this research is that of a single
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machine connected to an infinite bus, popularly called
SMIB. Even though it is a simplified representation of the
system, 1t allows complex nonlinear system analysis and
design to be carried out for the system and provide
fundamental understanding and results upon which
further stability analyses can be based. The general
structure of a SMIB system 1s shown in Fig. 1 (Kundur,
1994). A typical configuration 13 given m Fig. 2
(Mahmud et al., 2011) with its simplified representation
depicted in Fig. 3. 7 in Fig. 2 is the equivalent impedance
between the transformer terminal and the mfinite bus and
1s expressed as

7. =Ry X, (1)

where Ry and X; are the equivalent transmission line
resistance and reactance, respectively. The values of
parameters R and X are lumped together with that of the
generator and transformer. In other words, Rz is added to
the generator armature resistance to form the overall
resistance, while the sum of X; and X, (transformer
reactance) is added to each generator reactance to get
the appropriate overall reactance. The mathematical
representation describing the dynamic behavior of the
SMIB 1s given by the followmg third-order non-linear
state-space model (Sauer et al, 1988; Kokotovic and
Sauer, 1989):

4 _ (o, (2)
dt
; .
do A1+F2V sin26-A4VE'qsind-T'E Vicos 8( w-o, )
dt 2 M
3
dEq _ -BE', +132Vcost3+LEf €
dt T,
Where:
& = The rotor or torque angle in radians
w = The rotor speed in radians/s
E, = The g-axis voltage which is proportional
to the field winding flux linkage
v = The magnitude of the voltage of the
infinite bus
W, = The synchronous speed of the generator
E; = Represents the excitation coil voltage
M = 2H/w, is the moment of inertia
H = The generator inertia constant in seconds

Ty and T, = The d-axis and g-axis open-circuit
transient time constants, respectively

All the other parameters 1 the model, 1.e., A, A, B,
B,, F,-F, are given m the Eq. 5-7 (Table 1).
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Fig. 1: General representation of a SMIB
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Fig. 2: Simplified representation of a SMIB
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Fig. 3: Equivalent representation of a SMIB
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The last term i Eq. 3, defined as the damper-winding
torque component, equals D/M, where D is called the
damping constant. Thus, Eq. 2-4 are equivalent to the
popular flux-decay moedel (Anderson and Fouad, 2003;
Fusco and Russo, 2012; Kundur, 1994).

ds _ o0, (8)
dt
2
do :Al—R(w-ws)+ﬂsin26—A4VE' sing (9
dt M 2 !
dE'
i=_BE'+ Bz\fcose‘HLEf (10)
dt T,
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Control law derivation: This study presents two
non-linear excitation control signals based on the model
given previously. The first control signal is derived
directly from the general higher-order SMC structure
(Levant, 2001, 2005):

’ (1) (11)
u,=-Ke¢_,rth,h,h,.., h)
Where:
h¥+o M Py,
(pj.r zsat{ i\/[r]: = ’81
_ h
P, = sat E,SD
And:
v
@ | [en R
M, = | [hfz+ ' +....+‘h(“) e+
. a4 q
M, = | [hfr +n|" )

for j=1,2, ..., 11, e>0and g = rl. K and «; are the
parameters of the controller. The second control signal
employs a combmation of the saturation and signum
functions for control switching m a more effective
way 80 as to make u, n Eq.11 settle more quickly to its
steady-state value and also endow the system with the
ability to withstand greater fault duration. Tt is given by:

u, = -Ksat((r (hoh b h®V) e) (12)

-1, 12
Where:
I =h"+ oM, sat((U,,).€)

T, =h+ oM, sign(T, )
=h

InEq. 11 and 12, r stands for the relative degree of the
system with respect to an output function h(x). h(x) must
be properly selected to give stable zero dynamics. The
control signals ul and u2 which must be finite and

bounded, guarantee finite-time stabilization of the

system under uncertainty by ensuring that the condition
h@ =h@=hE=.~h""®=0 is satisfied. By selecting a
deviation of the rotor angle from its nominal steady-state
value, i.e., 8, as the output function, thereby vielding
r =3, u, and u, result in the following.

u, = 'K(sz(h,h,h): —Ksar M, e
, M,
With:
¢, , = sat (W’SJ
Py, — sat {ﬁ,g]
i3
M,, = (|h\2+\h\ )
Mm:(‘hz‘m)
And:
TSt
v =( <[ )
Likewise:
u, = -Ksat((l"z_ 5. 0, h, ﬁ), s)
- -Ksat((ﬁ+(x2M2, 35&t(r1,3,8)), s)
With:

T, ;=htoM, BSign(FM) andly ; =h

The system relative degree r 1s very imperative to the
application of these control laws. And it can be
determined by using the flowchart in Fig. 3 together with
the MATLAB code given in Appendix B. This chart is
produced on the basis of Definition 1 (Tsidori, 1995).

Definition 1: Consider the general nonlinear system:
x=f(x t)+g(x)u
The relative degree of this system with respect to an

intuitively pre-selected output function y(x) 1s the value
of k such that:
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Fig. 4 Flowchart for computing the relative degree of a
non-linear system

L.y(x) =L,L:y(x) =L,Liy(x)
=L L y(x) =0

But:
LLY'y(x) =0

within a region of x = x,; where L .L;y(x) represents the

Lie derivative of L;y(x) along the function g(x).

RESULTS AND DISCUSSION

The performances of the control laws are exammed in
this study. A solid symmetrical three-phase fault which 1s
simulated by a sudden reduction of the infinite bus
voltage to zero, 1s applied to create a temporary mismatch
between electromagnetic torque (T,) and input mechanical
torque (T,); post-fault and pre-fault conditions are
assumed to be the same. Two fault locations are examined:
one at the infinite bus and the other at the generator
terminals. Also, the fault clearance time is varied to show
the action of the control laws in retaining system stability
and wnproving damping. The values of both the system
and control law parameters used are provided m Eq. 2-7.
The system operating point for a constant excitation
voltage of 1.5603 pu is (8, w,, E,)) = (38.7621, 314.2857,
1.1300). Figure 4-7 present sets of waveforms of
system variables for a three-phase fault at the
infinite bus with fault durations of 7.9 and 14.7 cycles,
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Fig. 5: Waveforms comparing the performances of control laws (ul, u2) for an mfinite bus fault cleared after 7 cycles
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Fig. 6: Waveforms comparing the performances of control laws (ul, u2) for an mfinite bus fault cleared after 9 cycles
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Fig. 7: Waveforms comparing the performances of control laws (ul, u2) for an infinite bus fault cleared after 14.7 cycles
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Fig. 8: Waveforms comparing the performances of control laws (ul, u2) for a generator terminal fault cleared after 14.5
cycles
respectively. The relative action of the two control laws is variables to their pre-fault operating values degrades as
clearly depicted, demonstrating that the effort of control  the fault duration elongates. But for much smaller fault
law u, to damp oscillations and restore the system durations, u, exhibits better performance from power
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oscillation point of view with minimum adjustment of E'
(adjustment needed in the generator EMF through
manipulation of the excitation system to counter the
demagnetization effect of the armature reaction during
fault). Figure 8 show similar waveforms for a fault at the
generator terminal with a duration of 14.5 cycles. Because
of the severnty of the fault at thus location, u, could only
restore system variables for up to below a 14.5-cycle fault
(unlike the previous case). But generally, the system
variables settle to their steady-state values within 2.4 sec
after the removal of the fault.

CONCLUSION

This study has presented two non-linear

synchronous generator excitation control laws based on
the universal higher-order sliding mode control structure
(HSMCS). Whereas the first control law is a direct
application of the HSMCS, the second law 1s a modified
form of the first, derived to minimize the computational
time (since fewer calculations are required) and also to
make the system able to withstand longer fault duration.
System sunulations under the action of these control laws
for a fault condition tested with various durations of time
have also been provided to show the relative performance
of the laws. Meanwhile, this kind of control signals can be
umplemented in a static exciter configuration having a very
fast response. And it 1s very necessary to employ a stable
and robust online algorithm for obtaining the time
derivatives of the selected system output function. The
values of the system parameters used in this study are as
(Anderson and Fouad, 2003; Sauer et al., 1988).

APPENDIX

MATLAB Code for finding the relative degree of a general affine non-linear
system:

9%This function Relative Degree = RELDEG (F, G, H, S) is used to
determine the relative degree of eany given aftine non-linear SISO system
dX/dt = f(X)+eX)u, ¥ = h(X), where X represents the % states (x1,
x2,....xn) of the system. F, G, H and § are symbolic %eexpressions for f(x),
g(x), h(x) %and the states, respectively; fand g vector functions and h is a
scalar fiunction. % RelativeDegree is a positive integer between 1 and the
order (i.e., n) of the systermn. Note that %othe order of the system must be at
least 2. ALSO, NOTE THAT THE STATES IN F, G AND %H APPEAR
A8 x1, x2, x3,..., xn with THESE , OF COURSE, HAVING BEEN
2%DEFINED AS SYMBOLIC VARIABRLESR. For example, the system
dx(1)/d t= x(1)sin %ax(2)+20x(1)-2u, dx(2)/dt = cos %ax(1)+ 10u and y =
®(1) + x(2) having steady-state values 2ox0(1) = 0.5 and x0(2) = 2 is
Yocreated as: syms x1 x2fgh

2% 31 *#sin(x2)+ 20%x1 cos(x1)+10]5e9-2 10] h=x1+x2;3=[x1 2]}
functionreldegResult=reldeg(f,g,h.x)

sy sorder=length(t);

m=zeros(1,sysorder); d=zeros(1,sysorder);

L= symim); Lel fHx—=symi(d);

L{fHx(1)=h; %o the first element of LfHx

2% Compute the other elements of T.fHx

ifsysorder—2

LiHx(sysorder)=acobian (IfHx(sysorder-1),5%) *f;
else

for k=2:sysorder
LiHx(k)=acobian(L{Hx(k-1)x)*f;

end

end

% Cormpute the elerments of Tl tHx

for k=1:sysorder
LgLfHx(k)=jacobian(LiHx(k),x)*g;

end

% Find the relative degree of the systern

input(Enter all the n steady-state values as : x1= ; x2=;x3=; ...; xn
=

input('Enter the values for all the system parameters if any or press the return
key 9

LgLfHx_comp=subs(LgL{Hx),

p=tind(LglHx_comp);

RelativeDegree=p(1);

% Output the result

reldegResult='the relative degree of the system is: ' num 2st
r(RelativeDegree)];
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