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Abstract: Stereo mmaging s a powerful technique fordetermining the distance to objects using a pairs of

cameraspaced apart. The extremely high computational requirements ofstereo vision limit application to non
realtime applications wherehigh computing power is available. To overcome the limitation, we utilized the
general strategy for parallelization of dense cost functions on Compute Unified Device Architecture (CUDA)
with Graphic Processing Unit (GPU), especially for pervasive enviromment The challenges of mapping a
sequential stereo matching algorithm to a massively parallel thread environment are considered. Compared to
the CPU counterpart, the processing speed of the stereo matching algorithm based on CUDA programming can

be improved by about from 107-369 times.
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INTRODUCTION

Smart object and its mteraction with our daily
lives funnel a phenomenal amount of data around
well-developed pervasive environments. Data from
sensors (environmental sensors such as motion sensors;
smart phone sensors such as accelerometers and GPS;
and object sensors such as RFID tags) require a careful
analysis to extract interesting and relevant information
and the most important of all is how the extracted
mnformation can help develop well-being in human society.
The sheer volume of sensor data, as well as its streaming
and distributed nature, poses many challenges to the data
analysis, mobile sensing and knowledge discovery
commumity. Analyzing these data or big data, trails can
support different applications 1 a novel way.

In term of human perception, it is attempt to realize in
a digital way technology when it possible to update map
during stereoscopic fusion of this map with newer aerial
image. These kinds of processes were state of the art at
times when human perception was deployed in research
and production environments. Described here approach
can be termed as “teclnology fusion™ encompassing
photogrammetry, cognitive neuroscience and computer
vision.

The human visual system calculates the relative
depth of an object with respect to the object that the
eyes are fixated on. The perception of three-dimensional
depth from two disparate retinal projections is called
human-centric stereomatching (Zarnowski et al., 2010).

Human-centric stereo matching in stereo vision has
been widely studied a topic of computer vision with a lot
of surveyed in (Yoon and Kweon, 2005). State of art
algorithms as evaluated m the stereo benchmark
(Middlebury) have improved the matching cost accuracy.

Zhang et al (2006) compute simultanecusly the
disparity image and an illumination ratio map n a BP
framework for handling complex local intensity variations.
(Gautama et al., 1999) compared Zero mean Normalized
Cross-Correlation (ZNCC) and Census for car-seat
occupancy detection using window-based stereo vision.
For their application, (Banks and Corke, 2001) compared
Sum of Absolute Intensity Differences (SAD), Sum of
Squared intensity Differences (S8D), Normalized
Cross-Correlation (NCC) their zero mean variants, Rank
and Census for window-based sterec matching. The
evaluation includes visual inspection and the count of
pixels that passed the left/right consistency check on
images. Fookes et al. (2004) compared SAD, Zero mean
Sum of Absolute Differences (ZSAD), NCC, ZNCC,
Rank and MI for window-based stereo matching. Their
evaluation also measures the number of pixels that passes
the validity check. They concluded that ZNCC performs
best on 1mages without radiometric changes.

But, these algorithms are generally computational
complicated. To obtain fast speed, stereo on Graphic
Processing Umnits (GPUs) 1s an attractive trend, as the
successful exemplar of computer vision on GPUs
(OpenNVIDIA). GPUs which can utilize the horsepower of
massive parallel processors are effective to accelerate
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stereo algorithms by exploiting their parallelism. Several
recent methods have reached fast speed on GPUs wlule
maintaining matching quality (Yang et al, 2006). In
addition, these methods typically avoid 1mage
segmentation, which requires a large number of
computationally demanding iterations and plane-fitting,
which lacks the computational regularity necessary for
parallelization (Kalus et al., 2006, Bleyer et al., 2010).
large memory consumption could impede its
prevalence in matching high-resolution images with a
large disparity range (Lu et al., 2009) obtained fast
speed on a GPU using a cross-based local approach
(Zhang et al., 2009). Excluding the refinement stage of
Zhang et al. (2009) and Lu et al. (2009) cannot handle

occluded regions and large homogeneous regions
accurately.
In this study, the cost functions and

computationally efficient window-based cost aggregation
and a low-complexity optimization are introduced. The
scope of tlus paper 1s the evaluation and comparison of
some wieldy used stereo matching costs on images on
CUDA.

MATERIALS AND METHODS

Background: The basic structure of a stereo vision
application is shown in Fig. 1. Two cameras are spaced
apart by the baseline distance B. Each camera images the
object but from a slightly different angle. The distance to
the object can then be computed by:

p-BL ()
d
Where:
D = The distance to the object
B = The baselinedistance between the stereo images, is

the focal length ofthe camera

D = The disparity

D = The difference inlocation of the image of the object
between the left and right images

D = Finding by determining the correspondence
between pixels in the stereo pair is the primary
problem to be solved by this application

Researach computed in units of pixels which can be
converted to distance units by multiplying by the pixel
size. Also, this simple formula assumes 1dealized optics.

In order to find corresponding pixels in target and
reference mmage, there s obviously need for pixel similarity
measure. It is used the term as dissimilarity measure or
matching cost which increases as the similarity between
two compared pixels decreases. Matching cost is a
function of reference image coordinates and disparity.

Object

Distance to object

D=

f
v

B = Bascline distance
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Fig. 1: The basic structure of a stereo vision

The cost function returns the value of dissimilarity
for a coordinate in the disparity space. The disparity
space is made by the available image pixel coordinates
and disparity search range. Generally, disparity search
range has to be set mamually and Odepends on the
characteristics of the input image pair. The cost 1s referred
to as Disparity Space Tmage (DSI). This is due to the fact
that for each fixed integer disparity value, the function
represents an image visualizing the cost for every pixel
location.

Common measures that are used for pixel-wise
comparison are Absolute intensity Difference (AD)
(Kanade, 1994) and Squared intensity Difference (SD).
(Anandan, 1989). The cost functions for pixel-wise
comparison are written as:

Cup (p7d):|IL(p)7IR(p7d) (2)

Where:

I, (p) = The intensity of all pixels p in left image

Iz (p-d) = The intensity of corresponding pixel p-d
calculated using disparity component d,
respectively

Also, the square difference value can be defined as
the following:

CSD(p=d):|IL (p)_IR(P_d)‘Z 3

By extending the comparison to square window
regions centered about the search and reference pixels,
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these measures are turned into SAD, SSD and Normalized
Sum of Squared Intensity Differences (NSSD). The
SAD, S8D and NSSD cost functions based for square
comparison are defined as:

= 2 (L(g)-Tu(a-a) )

qeMg

Casn P:

where, all pixels of certain neighborhood are calculated
over disparities between left and right image. Also SSD
and NSSD can be written as:

Casn (P, d UI -I (q - d)T (5)

quq

Z qeMg UI (q)_ IR(q _d)T
JquNp L Z'quNp IR(q_d)z

CNSSD p.d

(6)
Next following cost measurements relies on
calculating at each position of the image under
examination a correlation or distortion function that
measures the degree of similarity or dissumilarity to a
template sub image. Among the correlation/distortion
functions proposed in literature, NCC (Hirschmuller et al.,
2002) and ZNCC (Krattenthaler et al., 1994) are widely
used due to their robustness in template matching. In fact,
the normalization embodied nto the NCC and ZNCC
allows for tolerating linear brightness variations. The NCC
and ZNCC cost functions for square comparison are

written as:
Z quq L
Ctee (p,d) =
VZ qeNp L q

Conee (p,d):
e (@)L (0)){Te(a-d)- 1, (p-d))
0 e (@1 () T a1 (- ) T (p— )
®

where, T (p)and T,(p—d) denote the mean intensity value

q d) (7)

Z aexnlR q - d)2

of and respectively. The focus of this study is on
matching costs between sequential and parallel
programming. This excludes popular methods like the
correlation-based weighting according to proximity and
color similarity (Yoon and Kweon, 2005) since this is an
aggregation approach rather than a matching cost.
Mentioned cost functions have been evaluated in term of
the complexity.

Cuda parallel processing architecture: The CUDA
computing engine visualizes graphics HARDWARE
available to the programmer through the use of
uniquely numbered threads that are organized from
one-dimensional to three dimensional blocks of arbitrary
size.

The thread can be thought of as a scalar arithmetic
processor whereas a block of threads i1s an abstract
representation of a multiprocessor composed of multiple
scalar processors and capable of performing operations in
parallel. The threads are executed on the graphics device
equipped with a GPU, hereafter referred to as the device,
serving as a coprocessor that enhances the computational
capabilities of the worlstation, referred to as the host.

The memory of the device 1s disjoint from the memory
of the host, making it necessary to allocate and transfer
blocks of data to the device prior to executing threads. In
addition to off-chip random access memory, termed global
memory, the device offers a limited amount of low-latency
on-chip memory accessible to all threads within a block,
referred to as shared memory. On-chip memory is also
available i the form of registers which are only accessible
to individual threads. The device code is encapsulated in
special functions called kernels that are imnvoked by the
host and executed in parallel by multiple threads. At
runtime, each block of threads gets mapped to a single
multiprocessor on the device and the threads within the
block are executed in groups of 32 called warps.

The execution follows the Single Instruction Multiple
Thread (SIMT) model which guarantees parallel execution
as long as the threads in a warp do not experience a
divergence of coding due to branching instructions. To
ensure peak performance, it 1s mmperative to maximize the
occupancy of the multiprocessors and to minimize the
latency associated with global memory access by
selecting the appropriate granularity of computations and
the proper assignment of thread block dimensions.

The implementation of the cost functions utilizes the
NVIDIA Tesla C2050 (GF100GL) computing processor,
equipped with GPU cores. Tesla ¢2050 allows it to
accelerate local and global memory references that exhibit
spatial or temporal locality through the use of memory
caching.

Figure 2 shows overall procedure of parallelization
and computing flow of kernels on CUDA. We exploit the
intrinsic parallelism exposed by the GPU assigming to each
thread on pixel of the reference image. For each pixel the
thread will process the entire disparity range d. We split
entire stereo matching algorithm in 3 main operations,
each one associated with a kernel.
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The first kernel, referred to as matching cost
calculation, takes as mput the reference and target images
in order to calculate matching costs for each block. The
second kernel, referred to as aggregation, takes as
calculated matching costs between reference and
target image are aggregated within each block of size
Aggregation 15 done by summing matching cost over
square window with constant disparity. The third kernel
referred to as optunization, for each pixel of reference
image, the cost of each possible correspondence with the
pixels of the target within the disparity range .Once these
operations are completed, the kernels searches for the
candidate with the mimmum cost within the disparity
range.

Algorithm 1 (Matching cost calculation kernel):

: procedure CostFuncKernel(input, output, C, arguments) »each thread do

2: tldx = blockIdx.x * blockDim.x + threadldx.x

3: tIdy = blockIdx.y * blockDim.y + threadldx.y

4: for (x, y-w/2) to (x, ytw) do » compute matching costs at the position
of [tidx, tidy]

5: C(tldx, tIdy) = costfuncitldx + x, Idy +y)

6: end for

7: end procedure

—

Algorithm 2 (Aggregation kernel):

: procedure AggregationKernel (input, output, AgerC, arguments) »each
thread do

: tldx = blockIdx.x * blockDim.x + threadlds.x

tIdy = blockTdxy * blockDim.y + threadlcey

for (x, y-w/2) to (x, y+w) do = aggregate matching costs

AgarC (tTdx, tTdy) = AggregateFunc(tTdx + x, tTdy +y,Ctldx tdy))

end for

end procedure

—

SO R w

Jl Input l
‘ Matching costs computation kernel ‘

1

‘ Aggregation kernel

¥
‘ Optimization kernel

Fig. 2: Parallelization and computaton flows of
processing kernels on CUDA

Algorithm 3 (Optimization kernel):

: procedure OptimizationKernel(input, output, AgerC, arguments) =each
thread do

: ldx = blockIdx.x * blockDim.x + threadldx.x

: tIdy =blockIdx.y * blockDim.y + threadldx.y

: for ded do » select the index having minimum of cost

:d = Opttldx, tidy, d, Agerc(tldx, tidy))

: end for

: end procedure

—

e LV I CR VR )

The Pseudo-code in algorithms 1, 2 and 3 describes
the operations executed by the matching cost calculation,
aggregation and optimization kernels, respectively. In
order to reduce the global memory latency, it 1s important
to bind the texture memory, as well as the reference and
target 1mages. The intensity values should be stored in
CUDA arrays. The image data is loaded into the extended
window mn a way that avoids bank conflicts, since no two
threads m the block write to the same bank in shared
memory. Although the device allows the maximum of 1024
threads within the block, corresponding to the block size
of |, due to limitations in the amount of shared memory
available to each multiprocessor. This high multiprocessor
occupancy makes it possible for the hardware to
effectively hide the latency of memory access.

RESULTS AND DISCUSSION

This secretion will discuss the performance of all of
the methods discussed so far and some of the fast
implementations available in literature. We have used
NVIDIA Tesla C2050 (GF100GL) on Intel quad core
system for all these experiments.

We tested all combinations of all matching costs with
the window-based aggregation and Winner-Take-All)
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Fig. 3: Execution time of full matching computation in
CPU programiming
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optimization on images to analyze computational
complexity (Scharstein and Szeliski, 2002). And we have
tested the speed of these methods using the Middlebury
stereo database which have varying the maximum
disparity range as shown Table 1.

Figure 3 and 4 show execution time of full matching
computation in CPU and GPU, respectively. Matching
costs are calculated one by one in sequential
programming. Since time-consuming of each cost function
1s significantly different in CPU, 1t 18 similar m GPU regales
of cost functions. As each block of threads gets mapped
each operation of stereo matching, latency 15 mimmized
in GPU programming.

Table 1: Middlebury stereo database

Sequences Image size Disparities
Tsukuba 384x288 16
Venus 434%383 20
Cone 450%375 60
Teddy 450%375 60

Table 2: Execution times of CPU implementations of each operation in Stereo Matching Algorithm

Cost functions (msec)

Sequences

(operation) AD sSD SAD S8D NSSD NCC ZNCC FZNCC
Tsukuba

Matching cost 20 18 570 740 1400 1300 1550 1160
Aggregation 470 470 460 460 470 470 470 470
Optimization 20 30 30 30 20 20 30 30
Allocation 1 1 1 1 1 1 1 1
Full matching 511 519 1061 1221 1881 1791 2051 1661
Venus

Matching cost 40 100 1120 1200 24770 2220 2950 1960
Aggregation 710 T00 700 700 F00 T00 700 700
Optimization 60 30 70 70 70 70 60 70
Allocation 3 3 3 3 3 3 3 3
Full matching 813 833 1893 1973 3243 2003 3723 2733
Cone

Matching cost 210 190 3480 3690 7360 46740 9160 5700
Aggregation 2210 2210 2210 2210 2210 2210 2210 2210
Optimization 200 200 200 190 200 200 200 200
Allocation 5 5 5 5 5 5 5 5
Full matching 2025 2005 589 6095 9775 9155 11515 8115

Table 3: Execution times of GPU implementations of each operation in Stereo Matching Algorithm

Cost functions (msec)

Sequences

(operation) AD SD SAD SSD NSSD NCC ZNCC FZNCC
Tsukuba

Matching cost 017 018 243 1.67 1.98 1.77 413 2.20
Aggregation 141 141 1.39 1.4 1.4 1.40 1.40 1.40
Optimization 01 01 01 0.16 0.1s 0.16 0.16 0.1s
Allocation 1.51 1.52 149 1.58 1.54 1.52 1.45 1.59
Full matching 3.25 327 547 4.83 5.00 4.85 7.14 5.35
Aggregation 1.99 1.97 2.04 2.03 1.98 2.05 2.03 1.94
Venus

Matching cost 0.55 0.54 3.56 2.54 2.90 267 6.07 3.532
Aggregation 1.99 1.97 2.04 2.03 1.98 2.0 2.03 1.94
Optimization 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Allocation 4.76 4.89 4.71 4.97 4.88 4.71 4.72 4.97
Full matching 7.58 T.68 10.59 9.82 10.04 9.71 13.10 10.51
Cone

Matchingcost 889 830 1347 9.61 11.13 10.23 22.86 12.72
Aggregation 737 791 752 7.89 7.89 7.70 7.65 7.56
Optimization 1.32 1.35 1.38 1.31 1.33 1.35 1.35 1.33
Allocation 821 824 824 8.23 819 8.11 8.21 8.20
Full matching 19.59 19.80 30.61 27.04 28.54 27.39 40.07 29.81
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Fig. 5: The results of depth map V

Tables 2 and 3 give details of the performance
comparison of different methods available in literature
based on CPU and CUDA, respectively. Although,
pixel- wise cost functions such as AD and SD are faster
than other cost functions based on CPU, By
comparing to existing real-time stereo matching
methods, the proposed method 1s evaluated in terms of
speed.

Computations of stereo matching based on CUDA
coding is faster than based on CPU coding about from to.
Each part of stereo matching algorithm on GPU shows the
high  computation

complexity —on  sequential

programming. However, since most time is consumed by
memory allocation and memory copy from DRAM to
CUDA memory, the results of time-consuming on CUDA
coding are similar about from ms to ms. The part
calculating matching cost 1s actually performed quickly by
splitting the thread unit. The cost functions based on
square window have high computational complexity in
CPU coding. In the CUUDA coding, the cost functions
based on square window make no differences in term of
speed.

Figure 5 shows the results of the computed depth
map according to the cost functions. The cost functions
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based on pixel-wise show the worse results than the cost
functions based on square window n subjective point of
view. ZNCC and NC show better results than the other
cost functions m term of uniform region and depth
discontinuities region. The cost functions implemented by
CUDA give the real-time performance and prove to be
faster than the state of art implementation based on
CPU.

When the display is low, we have obtained very high
performance. However, as the value of disparity goes
on increasing the performance degrades. But, it still
provides the enough performance for real-time
applications, especially for pervasive environment.

CONCLUSION

We have developed the stereo matching algorithm on
GPU platform. The performance comparison between CPU
and CUDA coding in stereo matching in terms of
computational complexity has been analyzed to provide
the real-time stereo vision n the pervasive computing
environment. We have tested our implementation on
sample 1mages from the Middlebury database. We

have achieved wvery high speed-up factor when
compared to the conventional sequential
umplementation.

Although, the part of memory allocation on the GPU
was slower than the CPU programming, the other parts of
stereo matching based on CUDA coding was much faster
than based on CPU coding by amount of about from
107-369%. In the CUDA development, pixel-wise cost
functions as well as square window cost functions make
depth map rapidly.

Hence, the proposed approach can be applied for
the real-time depth map generation based on the CUDA
programiming.
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