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Using the Force Decomposition Method to Study in the Thrust
Mechanisms of Flexibility on Bionic Structure Motion
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Abstract: Tt is difficult to identify the thrust due to the vortices generated by an undulating motion as well as
the shape and frictional drag as fish swims forward and encounter. This 1s because that the direction of thrust
and drag are opposite but in the same direction. In this study, we mvestigate the hydrodynamics of an
undulating fish-like bionic structure model from the perspective of force decomposition and the associated force
elements. Each bionic structure undergoes lateral motion in the form of a stream wise travelling wave. It’s
shown that added-mass force 1s the most significant thrust source among all considered motions and
arrangements. By identifying the variations of the vorticity thrust elements with various flow structures, we
found that the vortices round the leeside of deformable body are beneficial for thrust generation; however, the
average volume vorticity contribution is opposite to swim forward. These results lead to understand why
mviscid theory proposed by Lighthill and Wu could be used to explain propulsion of fish.
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INTRODUCTION

The effects of body flexibility on aquatic and flight
locomotion have been of interest to researcher. It has
been shown that for flying insect the flexible-wing
flapping can be more efficient mn lift generation. Besides,
a bending body or caudal of aquatic animal can increase
both efficiency and thrust. Understanding the
hydrodynamic characteristic for a deformable body
moving around m flow is helpful to design and construct
biomimetic propelled devices such as underwater and
micro-aerial vehicles. In this study, we concern ourselves
with the propulsive mechanisms of two types of motion:
one 1s a fish-like undulation motion and the other 1s a
heaving motion with flexibility by investigating various
force contributions due to the added-mass effect, the
vorticity in the flow as well as on the body surface.

Fish perform a large variety of swimming movements
and most of them generate a propulsive force by passing
a backward-progressing wave along the body. Tn general,
swimming propulsive modes can be primarily classified
mnto three categories based on the envelope shape of the
body. The mode 1s called Anguilliform if large amplitude
undulations exist along the whole body, Carangiform if
the undulations are only in the posterior part of the body,
and Thunniform if the oscillations are restricted only at
the tail. Each swimming mode has its exclusive abilities;
for instance, the Thunninform is known as the most
efficient locomotion mode (Lighthill, 1970) and the
Anguilliform swimmers can alter the propagation direction

of the wave to control backward or forward swimming.
More detail review on the fish swimming modes and
characterizes can be found by Sfakiotakis ef af. (1999).

The body moving in a small viscous flow generates a
series of coherent vortices shedding behind the body.
Observation of flexible motion such as swimming fish
reveals different types of wakes belund them which
apparently play an important role in the mechanisms of
thrust production. A simple two-dimensional oscillating
or undulating body under appropriate kinematical
conditions can produce a series of thrust-type vortices,
terms as a reversed Karman vortex street. These vortices
comprise regions of vorticity in alternating sign and are
aligned on either side of body’s trajectory to produce a
jet-like backward velocity mn the wake, carrying fluid
momentum. Based on the jet reaction principle, there is a
net thrust exerted on a body. Also, a series of continuous
and lined vortex rings are generated belind three
dimensional periodic oscillating and undulating bodies.
Although these wake structures are more complicated and
diverse compared to that in two dimensions, the basic
principles of explaimng thrust generation would be the
same.

Significant theories have been developed to
calculate the thrust generated by prescribed motions of a
rigid or deformable body i high-Reynolds-number
incompressible flow (Lighthull 1986; Wu, 1981). In nature,
the problems in fish swimming and insect flight are
complicated because they involve fluid-body interactions.
An instanteneous motion of the flexible body 1s
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determined not only by the forces from the ambient fluid
but also by embedded muscles with internal body elastic
forces, forming a couple dynamical system. However,
mvestigating the mechamsm for the prescribed
deformation of body is still important to understand the
locomotion of many swimming and flying organisms
(Alben, 2008). In the literature, there are several useful
mathematical models which describe kinematics of fish
swimming and shed light on different aspects of
hydrodynamic force. A quasi-static approach (Taylor’s
resistive model) 1s based on steady-state flow theory to
calculate the forces by means of sequential frames of fish
motion. However, it is over simplified due to ignoring
inertial force and is restricted to low Reynolds numbers
flows. Lighthill 1s one of major contributors to develop
mathematical theories to understand the physical
insight of many aspects of fish locomotion (Lighthill,
1960, 1969, 1970). The elongated body theory (Lighthill,
1960) also called by reactive elongated body theory
or slender body theory, assuming a frictionless fluid
(high-Reynolds-number incompressible flow), considers
that the acceleration reaction is the main propulsive force
for undulating fish. It predicts well the thrust for the sub
carangiform and carangiform modes. Later, lighthll
extended the elongated body theory to be more suitable
to the large lateral motion of the caudal fin for carangiform
modes, called by large-amplitude elongated-body theory.
Waving plate theory origmally proposed by Wu (1981) 1s
to treat the fish as an elastic waving plate swimming in an
inviscid fluid. The oscillatory Foil theory (Wagner ef al.
1925) which applies to analyze Lift generation for an airfoil
15 applicable to study the thrust for the carangiform
locomotion and the tuna oscillatory. Derived from the
slender body theory, bulk momentum (or Bulk flow)
theory (Blake, 1983) is most commonly used to investigate
bio-fluid mechamsms for aquatic amimals. It supposes that
the total momentum of fluid given by all the body
elements is equal to the momentum of fluid released from
the trailing edge of tail fin. It unplies that the vortex
structure i1 wake behind the fish is related to the
mechanism of propulsive forces. The blade element theory
which is originally used to determine the behavior of
propeller 15 applied to study the thrust of flapping
pectoral fins. The forces are obtamed by integrating along
the entire blade based on a steady solution. However, the
theory becomes unwieldy if the number of elements or
large time intervals must be small.

In spite of the above important works, several
questions remain unanswered satisfactorily. Tt is widely
known that fish swim at high but finite Reynolds number
flow where nertial forces dommate. Nevertheless, viscous
effects are responsible for vorticity generation and

therefore a force theory based on the real viscous flow is
amenable to full flow analysis. Next, as a fish accelerates
to swin forward, we have the equation of motion
ma = T-D according to Newton's Second Law. Obviously,
thrust T and drag D exerted on the body are along the
same line at the same time. Generally speaking, there was
no comprehensive theory that had been applied to
distinguish whether a flow element contribute to drag or
to thrust (except the potential forces). Recently, Lauder
(2011) reviewed swimming hydrodynamics and proposed
ten questions needed to resolve. He remarked n his article
“Although quite a few papers have investigated the
effects of flexibility on aquatic locomotor performance
(e.g., Alben et al., 2004, Alben, 2008; Shoele and Zhu,
2009), we still lack basic mformation on how flexible
natural biologic systems are and hence on how much
changes in flexibility affect locomotor parameters such as
thrust generation and efficiency.” Besides, some theories
are presented to explain the mechamsms of the thrust for
specific fish but are not applicable to explamn others. For
instant, Elongated body theory (Lighthill, 1960) is suitable
to analyze Anguilliform swimming of BCF modes whilst
failing to predict thrust for Tunalliform swimming of BCF,
which has to resort to the foil theory (Wagner e af.,
1925). This shows that it still lacks a unified theory to
explain the mechanisms of flexible effects for the diversity
of motions of organisms.

MATERIALS AND METHODS

In this study, the unsteady thrust mechamsms of the
flexible motion are mvestigated from the viewpoint of the
force decomposition theory (Howe, 1976, 1989, 1991,
1995). The force decomposition theory 1s usually used to
separate potential forces and to distinguish the
contributions of individual fluid elements to aerodynamic
forces in real flow. It starts from D’ Alembert theorem that
incompressible potential flow predicts that no force will be
exerted on a body if the mcident flow 15 a constant
uniform stream. Incompressible potential flow means that
there is no single fluid element possessing non-zero
vorticity or dilation. Tn addition, the force decomposition
theory was extended to study the problem of the
high lift generation of the msect flights (Lee ef al., 2012;
Hsieh et ad., 2010, 2009). On the other hand, the early idea
that forces experienced by the body in terms of the
vorticity distribution which 1s similar to this present
study, was reviewed by Biesheuvel and Hagmeijer (2006).
They pointed out the close relationship of Burgers’
formula to those by Lighthill (1969, 1986). These
researchers went further to establish the comnnection
between these earlier formulas and the more recent work
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on the aerodynamic forces by Kambe (1986) and
Howe et al. (2001). Fmally, we note a recent paper by
Magnaudet (2011) which provides a general form for the
prediction of loads on a body moving in an arbitrary
non-uniform flow.

In present study, the thrust mechamsms of the
flexible motion are mvestigated. The model 1s the
deforming body by creating an advancing wave from its
leading edge to trailing edge which demonstrates the
motion of all length of a fish with low aspect ratio fin.

Auxiliary potential: In order to analyses various force
contributions to the flow over a self-deformation body, we
need to mtroduce auxiliary potential functions. Let us first
determine the nature of potential solution. The potential
solution @ satisfies Vo® = O and is required to vanish at
mfinity. The general solution at great distances r from the
deformable body in two dimensions 1s given by:

(p:—(A-V)logr+---:—£+--- (1)
T

where, r 18 the unit vector along the direction of r. In
Eq. 1 the vector depends on the actual shape and the
motion of the flexible body and 1s mdependent of the
coordinates. The exact A requires a complete solution of
the equation V¢ = 0 and appropriate boundary
Tt should be kept in mind that the
corresponding velocity V¢ decay like 1/ in two
dimensions. The boundary conditions will be specified
depending on which force direction is considered. If s is
the unit vector along the force direction of interest, then
we require n. V@ = -ns on the body surface. The potential
function that satisfies this condition is used to
decompose the pressure force along the s-direction for
real viscous fluid to added-mass force, surface vorticity
force, volume vorticity force as well as other possible
contributions.

conditions.

The force decomposition: Consider a deformable body
motion in water as shown in Fig. 1. Let p be the water
density, u the water viscosity, L the chord length, 1T is the
inflow velocity. Take T, to be the reference length, 1/U to
be the reference time and pLU’ to be the reference
pressure. The flow field of the deforming motion 1s
assumed to be governed by the Navier-Stokes equations
and mcompressibility condition which, in dimensionless
form are given by:

a—v+(v-V)V:7Vp+LAV (2)
dt Re

Fig. 1. Schematic of flow about a deformable body where
1s the nflow velocity and 1s the chord length. The
force excerted on the body of which direction
same as the inflow direction is drag but opposite
is thrust

V.v=0 (3)
Where:
P = The pressure
v = The velocity and Re=pL.1J
p = The Reynolds mumber. The most well-known formula
for calculating the drag is

. 1 .
Cp, :J.Spn-ldAwLEJ.Snxm-ldA (4)
—_— -
Cop Cpr

Where:

I = The unit vector in the drag direction

n = The inward normal to the wing surface and
w = Denotes the vorticity

Now we show how to gain the formula of force
decomposition. First of all, we are concerned with the
drag direction. Let ¢ satisfy the boundary condition
n. Ve =-n. I (ie.,)s =1) which means the unit velocity on
the body. Let V; be the volume of fluid enclosed by a
circle surface S; of large radius and the body surface S.
Equation 2 can be written:

av 1 1
*Vp:—er—V‘V‘Z*VX(DwL—VX(D (5)
a2 Re

Here, we will use the two identities v.¥¢ =V. (v¢) and
(V<w). Vo = V.(oxV@) and apply the divergence
theorem. Taking mner products with on both sides
of BEq. 5 and integrating within the flow region Vi
yields:
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v 1 2
“hos, pn-VpdA = ISUSR (pa -ndA + ELUSR M Vo-ndA

1
7_|‘VR vxm-VodV + %J‘SUSR nxm-VedA

(6)
The fluid 15 non-vorticity in the far field from the
body. Applying this boundary condition and noting that
V¢ decays like 1/, we can carry out the integral on
the left-hand side and the first, second and fourth ones on
the right hand side with R~e and V-V (entire flud
region). Besides, recall the boundary condition n the.
V@ = -ni on the body surface for the left hand side to
obtain:

Ispn -idA :L(p%tl.ndA +%J.S|V‘ZV(p.ndA

Cp

4 Cpa Com (7
1
7_|‘vv>< ®-VodV + Ej‘snx w-VopdA

Crw

If the frictional forc Cy=1/Re[nxo idA on the right
hand side of Eq. 4 is included and combine it with the
surface integral vorticity force lfRefsnxm VpdA of the
third term in Eq. 7 the complete decomposition for the
drag force can be obtained:

ov 1 2
Cp = J.S(pa.ndA + EJ.SM Vg-ndA

Cpa D (8)
1
—IV VX - V(pdV+EJ.Sn>< - VodA
—_—

Cow Che

In Eq. 7 and & C,, is the contribution associated with
the added-mass force of the deforming body, C,,
corresponds to the contribution by the velocity of the
wing, Cp, denotes the contribution by the surface vorticity
and friction on the body surface and C,, represents the
contribution of pressure force due to vorticity within the
flow field. In particular, the integrand-vxw. Vg 1s called
the volume drag element and 1/Re nxw. (Vipt]) is called
the surface drag element where the part with Vg is called
the friction-like force. Either of them may be termed the
vortex force elements. A salient feature is: only the
volume drag elements near the body contribute
significantly to the drag force because Vg is rapidly
decaying away from the body. Also, the potential
function @ can be considered as the geometric factor for
each flow condition can be associated with a unique ¢. Tt
is noted that among the force components, C,, and Cp, are
determined by the boundary conditions and the geometric

profile while the determination of C,, and C, requires
solution of the fluid flow. Note that if we consider the
force in lLift direction, say s =17, then ¢ has to satisfy n.
V@ = -n. I on the flexible body surface. The force along
the j-direction 1s decomposed by:

. 1 .
Cp :_[Spn-]dAwL%J‘Snxm-]dA
— -~

CLp Cre
dv 1 2
:_[S(pa-ndAJrEJ‘JV‘ V- -ndA (9)
CLa CLm
1 .
—Ivvx m-V(pdV+%J‘Sn>< @- (Vo +j)dA
CLv CLs

Here, the numerical results are obtained by the
SIMPLEC methed of the commercial code Ansys FLUENT
based on the control-volume method. Moreover, a
conformal-hybrid grid is used in the numerical method In
each time interval, the grid deformation is adjusted by the
deformation of the body to achieve numerical stability,
according to the method of spring analogy and
remeshing, and governed by the Geometric Conservation
Law (GCL) (Thomas and Lombard, 1979). In the present
study, the total drag coefficient Cp i1s obtamned by
summing up all the drag components, C,,, C,, C;, and Cp,.
To ensure its accuracy, Cp will also be computed
according to Eq. 4 and the computed result is denoted by

Co (p).

RESULTS ND DISCUSSION

The present force representation will be applied to
the fish-like undulation motion and heaving motion with
particular emphasis on the individual effects of the thrust
and drag elements. Here, we consider a uniform flow
passing through a deformable body with NACAO0012 in
shape. To compare the mechanisms of the two motions
consistently, the Reynolds number Re = LU is fixed at
5000 in this study.

The motions of undulating model are be concerned.
The lateral deformation y,, of the undulating body is
according to Y (x, v) = A (%) cos (2nl/A(x-ct)) where A (x)
is the amplitude with variation with the each body element
position, ¢ is the progressing wave speed and A is the
wavelength of the wave. Based on investigation of the
kinematic data of steadily swimming saith (Videler, 1993),
the amplitude of the body wave can be described by
A (xX) = AfrAx+AX and the coefficients A, A, and
A, are solved by A (0) = 002, A (0.2) = 001 and
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Fig. 2. Averaged drag coefficients versus the phase
speed (Cr,, Cop Crm » Coe Coy Cra)- It has to been
noted that the negative means the thrust
generation

A (1)=0.10. Another sigmficant non-dimension parameter
that characterize hydrodynamic performance for the fish
undulation is Strouhal number which is defined as
St = fA/U where f is beat frequency of a fish.

To start with the discussion, the varicus thrust
contributions for the undulations as a function of phase
speed ¢ in the range from 1.0-2.0, corresponding to
Strouhal number St within the interval 0.2-0.4 which lies in
the regime of swimming animals, under the condition of
assuming the constant umform free-stream velocity and
the peak-to-peak amplitude were analyzed This motion
physical parameter setting could lead us to understand
the propulsive mechamsms of lhve fish in nature.
(Fig. 1).

Figure 2 shows the average total drag force C as well
as the five thrust components, C,,.. Cp,, Cy, Cp, and Cg
versus the phase speed c¢. The average drag chas the
maximum (= 0.06, drag force) at ¢ = 1.0, decreasing to
nearly zero in a range near ¢ = 1.05 and to the minimum
(= -0.06, thrust force) at ¢ = 2.0 where an undulating foil
gains a net thrust force to swim forward in a uniform flow.
This behavior of the can be analyzed by explammg the
various contributions of the constituent force
components. The drag C, i3 uniformly small and
negligible compared to other components for all ¢. By
mcreasing the phase speed, the C,; and C,,, increase
slightly and the relative ratios of increasing from¢=1.0
to 2.0 are 0.02 and 0.03, respectively. As far as
volume-vorticity contribution Cp, 18 concerned, the value
acts as drag force and becomes larger with increasing c.
Also, the increasing ratio of Cy, from ¢ = 1.0-2.0 15 0.04
which implies that an undulating foil gains larger drag
force from the vorticity in the flow field with the increase
in phase speed.

0.4 e B S R

 Various thrsut contribution

06 P T TSI I E

Fig. 3: Time histories of the drag contribution for the
phase speed ¢ = 2.0 (Bleak: Cy,; Purple: C,,; Blue:
Cp.; Green: Cp; Red: Cpp Gray: Cp)

However, a flexible foil gaining a propulsive force -Cp,
1s completely credited to the added-mass force C;,, which
1s negative and significantly decreases with mncreasing c.
The increasing ratio of Cp, for the case ¢ = 2.0 compared
to ¢ = 1.0 is 0.2 which is not only enough to overcome
other increasing of drag contributions, C,,, Cy and Cp,
due to mcreasing in ¢ but also provides extra propulsive
contribution to total thrust C,. Meanwhile, we note
that the drag contribution from the pressure term
(Cyp = CantCoCrtCr,) 18 close to zero for a cruise
swimming motion in the case of phase speed. It 1s
consistent with Wu’s theoretical prediction based on the
inviscid flow analysis (only consider the pressure force
and neglects the viscous force).

In order to elucidate the unsteadiness, Fig. 3 shows
the time histories of the total drag Cy, as well as the five
thrust components Cy,,, Cp., Cps Cr, and Cp, for the phase
¢ = 2 in a period of undulation after reaching a periodic
state. In the beginmng of the period, the tail of the foil 15
located at a maximum 0.1 in a lateral direction where the
phase velocity is just equal to zero. First, we observe
one maxinum and one mimimum in the total drag C,
as well as in the added-mass, volume-vorticity, velocity
components, Cp,, Cy, and C,, in a half undulating period
(/T = 0-0.5). Besides, the behaviors of, C,,, C,, and C, are
similar, while that of C, is mverse to them. More detail,
we note that Cp,, 18 uniformly small and can be neglected.
For friction force, Cy it is uniformly positive (0.4) in a full
period. The time history curve for Cp, is also entirely
positive. Consider, C,, it 1s obvious that Cy, 1s positive
most of the time and the maximum (= 0.26) occurs when
t/T = 0.4 However, an interesting point is minimum
Cp, (-0.48, thrust) appearing in the stage in which the tail
of the undulating foil accelerate closely to the maximum.
We will explain this according to the volume-drag element
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Fig. 4: Maximun thrust for the case ¢ = 2.0 at t/'T = 0.16: a) vorticity contour (red, anticlockwise; blue, clockwise) and b)
thrust force element contour (red, drag elements; blue, thrust element)

Fig. 5: Maximun drag for case ¢ = 2.0 at t/T = 0.41: a) at (a) vorticity contour (red, anticlockwise; blue, clockwise) and
b) thrust force element contour (red, drag elements; blue, thrust element)

contour later. Turn to investigate the added-mass force
contribution. Cr, is negative all of the time which means
that an undulating mainly maintains a positive total thrust
-Cp because of the positive contributions-C,, More detail,
the minimum (= -0.48) occurs when /T = 0.41 while the
maximum Cp, (=-0.03) occurs when t/T = 0.16. In summary,
thrust -Cp
propulsive motion of the foil consists of added-mass
and volume-vorticity forces. In particular, the conditions

the instantaneous required for the

for mamtaiming the positive -C, are added-mass force
attains the maximum to balance the drag generated by
volume-vorticity forces. As added mass forces decreases
to the minimum, the volume-vorticity force could
immediately provide some positive contribution to the

total thrust to offset. It could be concluded that an

undulating foil smoothly operates and appropriately
modulates added-mass and volume-vorticity forces to
gains force to swim forward.

Here, we choose the case of phase speed ¢ = 2 to
examine how to gain instantaneous thrust force from
vorticity in the surrounding flow generated by an
undulating motion. These behaviors can be examined
closely by exploring the distributions of volume vortex
elements at different times. Before we proceed with the
details, we emphasize that a region of vorticity of the same
sigh may contribute both positive and negative. Whether
we have net positive or net negative force elements
depends on the instant shape of the fish foil and the
actual flow condition. Figure 4 and 5 show two snapshots

of wvorticity and volume-thrust elements when n
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Fig. 6: Time history of the added-mass and volume-vorticity contribution for the different phase speed

undulating foil obtains the maximum thrust (= 0.02) and
drag (= 0.14) at t/T = 0.16 and /T = 0.41, respectively. In
Fig. 4 and 5, it is found that the strong shear layers of
different sighs are generated along the undulating foil
surface. These strong shear layers gradually shed into
down stroke to form a reverse von Karman vortex-street.
It has been concluded that this vortex structure induces
a jet mean velocity profile in the wake and leads to the
generation of the thrust. However, 1t 1s not totally enough
to explain high thrust mechamsm of an undulating foil
from our perspective. Figure 4b shows that the vortex
layers round the leading edge of the foil provides large
thrust elements (Red). Also, an important mechanism we
found 1s that the slender vorticity located at a wind side
of the foil provides drag forces while that located at a
leeside of the foil provides thrust forces. Interestingly,
these slender drag and thrust elements are followed by
the motion of the body travelling wave to the tail. As the
thrust elements (blue) just shed into the wake and are
enhanced by the acceleration of the tail, C,, will attain
to the minimum (Fig. 4b). Similarly, attains to the
maximum while the slender drag elements shed mto the
walce, showed in Fig. 5b. Next, we pay attention on the
time-independent C,, 1, and during one circle for different
phase speeds mn Fig. 6. [t 1s shown that two local maximum
and mimmum are identified during one period. It 1s found
that as ¢ increases, C,, and Cp, varies largely. Besides, C,,
is negative for all phase speed c¢. For Cp,, it could be
negative during some time intervals in a cycle for ¢>1.0,
except the case of ¢ = 1.0 (C, 1s all positive).

CONCLUSION
Using the force decomposition theory, the
mechanisms of thrust and drag generated by the

two-dimension representation of an undulation swimming
motion was mvestigated m this study. The unsteadmmess
effects of the undulation propulsion includes the

added-mass produced by the body acceleration and the
vorticity within in flow field and that on the body surface.
In the results, it is clear that added-mass force is the most
significant thrust source among all considered motions
and arrangements. Also, the vortices round the leeside of
deformable body are beneficial for thrust generation is
found by identifying the variations of the vorticity thrust
elements with various flow structures. However, the
average volume vorticity contribution 18 opposite to
bionic structure forward. All in all, the results of this
study the theory proposed by Lighthill and Wu and have
same conclusion to explain propulsion of fish. On the
other hand, the phenomenon of the oscillatory motion of
the biomic structure 1s also an interesting work in the
future work.
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