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Abstract: Image segmentation refers to the process of partitioning an image into mutually exclusive regions.
Automatic brain tumor segmentation has become a key component for the future of brain tumor treatment.
Gliomas are the most common primary brain tumors, evolving from the cerebral supportive cells. Despite
intensive research, automatic segmentation remains a challenging problem due to the diverse image content,
cluttered objects, occlusion, image noise, non-uniform object texture and other factors. There are many
technicues have been proposed in the literature for automatic brain tumor segmentation, those approaches arise
from the supervised learning standpoint which requires a labelled traming dataset from which to infer the
models of the classes whose retrieval becomes a tedious and time-consuming task. On the other hand,
unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised
methods. In this sense, we propose an automated unsupervised method for brain tumor segmentation based
on Magnetic Resonance (MR) images. This study presents a novel unsupervised image clustering based on
Harmonic Search Optimization (HS0O) and Fuzzy C-Means (FCM) for Glioblastoma Multiform (GBM) Tumor
segmentation. The performance of FCM algornithm to obtain an optimal solution depends on the 1mtial positions
of the centroids of the clusters. Tn the existing FCM, the centroids are initialized randomly. This leads to
increase in time to reach the optimal solution. Tn order to accelerate the segmentation process a new method
called HSO based FCM 1s proposed. The proposed algorithms exploits an imtial step derived from the HSO,
considering Otsu Method as the objective function. After finding the cluster centers using HSO, FCM
algorithm is initialized with these cluster centers. Finally, active contours are used for GBM tumor segmentation
and boundary tracking. The experimental results confirms that the proposed method as a viable alternative for

GBM tumor segm entation.
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INTRODUCTION

Image segmentation is the procedure in which the
original 1mage 1s partitioned into homogeneous regions.
It has been widely used in many application fields such as
medical image analysis to characterize and detect
anatomical structures, Magnetic Resonance (MR) 1maging
1s a non-invasive medical imaging technique that provides
excellent soft tissue contrast and has become the
standard imaging techmque for brain tumor diagnosis
(Angelis, 2001). As the imaging mechamsm and the
tissues of medical images are different, medical images are
easily affected by noise, field migration effect and tissue
movement. Compared with the common 1mages, medical
images have more non-uniformity and fuzziness. The early
wdentification and delmeation of the different tissues
related to the tumor becomes crucial to make decisions
that can improve the patient swrvivability. The manual
analysis and segmentation of these tissues inwolves a
complex, time-consuming and biased task which caught

the attention of the Pattern Recognition (PR) and Machine
Learning (ML) community (Bauer et al., 201 3). Particularly,
Glioblastoma Multiforme (GBM) tumor has received most
of this attention, as it 1s the most common and aggressive
malignant tumor of the central nervous system
(Dolecek et al, 2012; Deimling, 2009). GBM’s are
heterogeneous lesions that present different areas of
active tumor, necrosis and edema, all of them exhibiting a
high variability related to the aggressiveness of the tumor.
Hence, the automated segmentation of these lesions
becomes a desired solution from the clinical standpont.
Most of the recent reviews on brain tumor
segmentation 18 on supervised learming approach
(Verma et al., 2008; Ruan ef al., 2011). Support Vector
Machines (SVM) were applied to multiparametric MR
datasets to segment health and pathological tissues and
additionally sub compartments inside these areas
(Jensen and Schmainda, 2009) applied several neural
networks to detect brain tumor mvasion (Lee ef al., 2008)
used a combination of Conditional Random Fields (CRF)
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and SVM to perform tumor segmentation (Bauer et al.,
2011). Baur also used SVM and hierarchical CRF to
segment both healthy and tumor tissues including sub
compartments. Recently, Random Forest (RF) (Breunarn,
2001), techniques have shown high success in the
supervised brain tumor segmentation task (Meier et al,
2013; Festa et al., 2013; Reza and Iftekharuddin, 2013). Tn
several approaches based on variants of the RF algorithm
were proposed for the Tmage Segmentation Challenge
of Medical Image Computing and Computer-Assisted
Intervention (MICCAT) 2013 Conference, reaching the
first positions in the competition. However, supervised
learning requires an expensive, time-consuming and
biased task to retrieve a sufficiently large set of labelled
samples from which to learn discriminant functions for the
posterior segmentation (Schmidt, 2005). Furthermore, the
supervised approaches are limited to the size and quality
of the dataset, among other lmitations such as the
over-fitting to the training corpus (Wagstaff, 2002).
Moreover, spatio-temporal changes 1n  clinical
environment such as new MR machines, protocols or
centres may distort the data and hence, could affect the
performance of the supervised models (Richard, 2000).
Unsupervised learmng tackles these limitations in a more
straightforward way.

The unsupervised segmentation methods that use
image-based features, rather than dividing the image
along anatomically meanmgtul distinctions, divide the
images into homogeneous regions using image-based
features such as intensities and or textures. These
methods can handle more complicated cases, example
producing an accurate segmentation of the different
regions present in a heterogeneous tumor. In the case of
brain tumor segmentation, the lack of shape or intensity
priors on the tumors makes unsupervised segmentation
more challenging.

Unsupervised learning does not require a training
dataset from which to learn the models of the classes but
directly uses the patient specific data to find natural
groupimngs of observations called clusters. Hence,
unsupervised  learning  builds an  intra-patient
segmentation model which 1s independent from the
differences between other patient’s data. By the opposite,
the absence of a previous manual segmentations to guide
the learning process makes the segmentation more
challenging and often lead to a worse performance with
respect to supervised approaches. Three major
disadvantages when using unsupervised segmentation
methods using image-based features: the number of
regions often needs to be pre-specified, tumors can be
divided into multiple regions and tumors may not have
clearly defined mtensity or textural boundaries. Some
attempts for brain tissue segmentation have been made

under the unsupervised paradigm proposed an approach
based on fuzzy clustering and domain knowledge for
multi-parametric non-enhancing tumor segmentation
(Fletcher et al, 2001). Domain knowledge and
parenchymal tissue detection is based on heuristics
related to geometric shapes and locations which may not
be robust when high deformation is presented. Moreover,
several assumptions such as prior knowledge about the
number of existing tumors or the minimum required
thickness of the slices mtroduces several limitations to
the method.

On the other hand, the Harmony Search Algorithm
(HSA) ntroduced by Geem et af. (2001) is an evolutionary
optimization algorithm which is based on the metaphor of
the improvisation process that occurs when a musician
searches for a better state of harmony. The HSA
generates a new candidate solution from all existing
solutions. The solution vector 1s analogous to the
harmony in music while the local and global search
schemes are analogous to musician’s improvisations. In
comparison to other metaheuristics methods in the
literature, HSA imposes fewer mathematical requirements
as it can be easily adapted for solving several sorts of
engineering optunization challenges (Mahdavi et af.,
2007). Fuwthermore, numerical comparisons have
demonstrated that the convergence for the HSA 1s faster
than GA (Lee and Geem, 2005) which attracts further
attention. It has been successfully applied to solve a wide
range of practical optimization problems such as discrete
and continuous structural optimization (Lee et af., 2005),
parameter estimation of the non-linear Muskingum Model
(Kim et al., 2001 ), design optimization of water distribution
networks (Geem, 2006), vehicle routing (Geem et al.,
2005) combined heat and power economic dispatch
(Vasebi et al., 2007) design of steel frames (Degertekin,
2008) and umage processing (Cuevas er al, 2012).
Although, the standard HSA presents good search
characteristics, several modifications to the original HSA
have been proposed in the literature in order to enhance
its own features (Alia and Mandava, 2011).

MATERIALS AND METHODS

Harmony search algorithm: The harmony search 1s based
on the harmony memory which consists of solutions
called harmony. The harmomnies are generated by the
random selection of vectors. After the generation of the
HM a new candidate 1s generated for each of the
harmony. Tt consists of the worst and the best solution.
Then, the HM 1s updated by comparing the newly
generated value with the worst solution of the memory, if
the better solution 1s found then the values should be
swapped. Tt consists of three steps:
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¢+  Harmony memory initialization
¢ New harmony vectors
*  Updating the harmony memory

Harmony memory initialization: The memory initialization
consists objective function which is used to optimize the
problem and it 1s described by the following function:

minimizef(x), x = (x(l), x(2), x(3), x(4),..., x(n))e R"
subject to : X(j)e[l(j),u(jﬂ j=1,2,3,...n
(D

Here, f(x) is an objective function which consists of
a set of design variables and n 1s the number of design
variables. 1(j) and u(j) are the lower bound and upper
bound values of x(j), respectively. We have different
parameters to be mitialized such as Harmony Memory
(HM), Harmony Memory Consideration Rate (HMCR) and
Number of Improvisations (NT) these represent the total
mumber of iterations. The performance of HSA also
depends on the values assigned to these parameters.
which in turn, depend on the application domain
(Lobo et al., 2007).

The initial vector components at HM, that is, HMS
vectors are configured. Here, the x, = {x(1), x(2), ..., x,()}
these represent the ith randomly generated harmony
vector by x; (J) = 1G)+H()-1G)).rand (0,1 for j=1,2,3, ... n
andi=1, 2,3, ..., HMS. Where the rand (0, 1) generates a
random number between O and 1. Then the Harmon
memory matrix will be filled with the HMS vectors as
follows:

HM =[X,. X5, X4, . X yus | (@

Improvisation of new harmony vectors: Generation of new
harmony 1s known as improvisation. The new harmony
vector x,, 18 buit by considering the parameters
memory consideration, random re initialization and pitch
adjustment. The value of the first decision variable x,,,, (1)
for the new vector 1s chosen randomly form the harmony
memory and then compared with the HMCR if the r, (0, 1)
is less than the HMCR then the decision variable x,,., (1)
is generated. Otherwise it is obtained from the 1(j) and the
u(}). Values of the other vanables x,,,, (2), x,.,, (3), ..., X (1)
are also chosen accordingly. The operations are carried
out as follows:

X (e X () X s (23 with probability HMCR

N 1)+ u(j)-1(j).rand (0, Dwith probability -HMCR
3)

Every component obtained m the HM is examined to

determine whether it should be pitch adjusted. For this the

new

Pitch Adjusting Rate (PAR) is defined as to assign the
frequency of the adjustment and to control the local
search around the elements of the HM. The pitch
adjusting decision 1s calculated as follows:

%, () = X, (j)+ / —rand (0,1).
x_.(j) = {BWwithprobabilityPAR (4)
(j) with probability(1— PAR)

Xnew

Pitch adjusting is responsible for the generation of
the new harmomies as they modify the original variable
positions. The decision variable is either perturbed by a
random number between 0 and BW or left unaltered. In
order to protect the pitch adjusting operation, it is
important to assure that pomts lying outside the feasible
range [, u] must be reassigned.

Updating the harmony memory: After the generation of
the new harmony the then it 13 compared with the worst
harmony vector m the HM. If the newly generated
harmony is better than the worst then it is replaced with
the worst and then it becomes the new worst so after
some iterations the HM contams the best vectors.

Algorithm 1 for generation of the best vector:

1) The parameters HMS, HMCR, PAR, BW, NI are initialized

2) The value of the each vector in the harmony memory is calculated using
the objective function

3) Toimprove the new hammony value x,,.,,
The random value generated should be less than the HMCR then ..
(j) = Xew () where a = 1,2,3,... . HMS. Then it should be verified with
the PAR value if 1y is less than the PAR value then x,,.(j) = 3,.,{) +/-
r3. BW. Here, 1, 13, 13 are generated by the operation rand (0,1) which
selects a value between 0 and 1
The newly generate hammoiy is then compared with the lower bound
value if it is <1(3) then the new harmony is assigned 1G)
If the value is greater than the u(3) then the new harmony is assigned
with the u(j)
If every condition as stated as above does not satisfied then the value is
calculated according to the x, = Xy 1f fxer )<f(x:)

4) Then the worst harmony in the harmony memory is updated with the
newly generated harmony

5) IfNI (Number of Iterations) are completed then the best harmorty vector
%, in the HM is retumed else retum to step 3

Algorithm 2 for thresholding according to the generated

vector:

1 Read an image T, Store it into T, and ¢ =1

2 Using the imhist function generate the histogram h*

3 The probability is calculated using the distribution obtained in the
histograms

4 Initialize a HM x°; of HMS random particles with k dimensions

5 Initialize HSA parameters: HMS, k, HMCR, PAR, BW, NI and the
lirnits of 1 and u

6 The values w’ of uf; and are calculated using the objective function in
Otsu
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Fig. 1. a, b) Example of the a GBM brain tumor on a T1w post contrast MR mmage slice and the corresponding tumor
contour and ¢) different heterogeneous regions of the brain tumor and label them as edema, active or necrotic

7 The improvisation of the new hammony is performed as follows:
The random value generated should be less than the HMCR then
X (1) = XF where a =1,2,3,.... HMS
Then it should be verified with the PAR value if r, is less than the
PAR wvalue then x°, (j) =<5 (j)+/-r:. BW. Here, r, r 13 are generated
by the operation rand (0,1) which selects a value between 0 and 1
The newly generate harmony is then compared with the lower bound
value if it is <I(j) then the new harmony is assigned 1(j)
If the value is greater than the u(j) then the new harmony is assigned
with the u(j)
Tf every condition as stated as above does not satisfied then the value is
calculated as follows:

X (G) = 1 (j)-1() where rerand (0,1)

8  Update the HM a8 3, =3 = i T6C 5 D0E 000

9 TfNI is completed, then go to next step. Otherwise go to step 6
10 Select the harmony that has the best x%,4 objective function value
11 Apply the thresholds values contained x,, in to the image

Computational procedure: The computational procedure
of a basic HSA can be summarized as in Algorithm 1. This
procedure 1s implemented for mimmization. If the mtention
1s to maximize the objective function, a sign modification
of step 4 (X, = Xyow if (X >1(x,) 18 required. Tn this HSA is
used for maximization process (Fig. la-c).

The proposed GBM tumor segmentation system: The
proposed medical image segmentation system consists of
four stages: pre-processing, finding cluster centers using
HBO, segmentation using FCM, tumor extraction using
active contours and validation stages. The main 1dea of
HSO is to reduce the number of iterations done by
initializing the right cluster centers to fuzzy c-means
clustering techmques that, of course, minimizes execution
time and give qualitative results. The results of our
experiments clarified that our Hybrid Clustering Method
(HSOFCM) can detect a tumor that cannot be detected by
Fuzzy C-means with less execution time. The main stages
of the proposed system will be discussed in more detail in
the subsequent sections.

De-noising: MRI preprocessing is an active field of
research that attempts to enhance and correct MR 1images
for posterior analysis. In an unsupervised approach there
is no reference or manual labeling from which to learn the
models of the tissues so common artefacts such as noise.
MRI images are usually corrupted by disturbances like
(Gaussian and Poisson noise (Rodrigues ef af., 2008). The
vast majority of the de-noising algorithms assume
additive white Gaussian noise. There are some algorithms
that designed for Gaussian noise elimmation such as
edge preserving bilateral filter, total variation and
non-local means. In this research we used median filter
(Arias-Castro and Donocho, 2009). Median filtering is a
nonlinear filter that i1s used as an effective method for
removing noise while preserving edges. It works by
moving pixel by pixel through the mmage, replacing each
value with the median value of neighboring pixels. The
pattern of neighbors is called the “window™ which slides
pixel by pixel over the entire image. The median 1s
calculated by first sorting all the pixel values from the
window into numerical order and then replacing the pixel
being considered with the middle (median) pixel value.

HSO for cluster center initialization:

Step 1 (Harmony representation): Fach harmony
(candidate solution) uses k different elements as decision
variables within the optimization algorithm. Such decision
variables represent a different threshold point th that is
used for centre selection. Therefore, the complete
population is represented as:

HM =[x X5,.... Xjpe: HM 3]
% = [th,th,..., thi ]

(3
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Input MR image

A4

Pre-processing (de-noising)

A 4

HSO for identifving cluster centers

\ 4

FCM clustering for image
segmentation

A 4

Feature extraction using active
contours

A 4

Validation

Fig. 2. Block diagram of the proposed GBM tumor
segmentation approach

Where:

T = Refers to the transpose operato

HMS = The size of the harmony memory

X = The ith element of HM and ¢ =1 is chosen

1

For this problem, the boundaries of the search space
are set to 1 = 0 and u = 255 which correspond to image
intensity levels (Fig. 2).

Step 2 (HMA implementation): The proposed algorithm
has been implemented considering Otsu method
(Mahdavi et al., 2007) as objective function:

J(TH)=max (*(TH)),0 <th, <L -1i=123..k (6)
where, TH = {th,, th,, th, ....th,} is a vector containing

multiple thresholds and the variances are computed
through:

ic_ vk c _ vk c c cy2
c _21:101 _21:1W1 (u1 711-1-) (7)
Here, i represents the i class, w and u; are

respectively, the probability of occurrence and the mean
of a class. In MT such values are obtained as:

iph/
wi(th,)

wy (th) =2 phy andu; =X,

Step 3 (Parameter setting): The performance of HSA is
strongly influenced by values assigned to parameters
HM, HMCR, PAR, BW and NI. Determining the most
appropriate parameter values for an arbitrary problem is a
complex issue, since such parameters interact to each
other in a lghly nonlinear manner and no mathematical
models of such interaction currently exist. The common
method to find the best set of parameter values 1s to fix
each parameter value to a random number within the
parameter limits and then HAS 15 executed. If the final
result is not satisfactory; then a new set of parameter
values 1s defined and the evolutionary algorithm 1s
executed again. In order to reduce the number of
experiments in this study, it has used the factonal
design method proposed by Costa et al. (2005) and
Khadwilard ef af. (2012) to systematically identify the best
parameters of HSA. The factorial design method
(Hunterand Hunter, 1978) 1s a statistical techmque that
evaluates at the same time all process variables in order to
determine which ones really exert sigmficant mfluence on
the final response. All variables are called factors and the
different values chosen to study the factors are called
levels. The factors to be considered in the factorial design
are the HSA parameters, the Harmony Memory (HM), the
Harmony Memory Consideration Rate (HMCR), the Pitch
Adjusting Rate (PAR), the Distance Bandwidth (BW) and
the number of Improvisations (NI} whereas the response
1s the best fitness value obtained as a consequence of the
HSA execution.

Step 4: With the best possible configuration of HSA
using image histograms and the Otsu functions cluster
centers are generated (Otsu, 1979).

Fuzzy C-Means (FCM) algorithm: The fuzzy c-means
(Zhang et al, 2010) 15 an unsupervised clustering
algorithm. The main idea of introducing fuzzy concept in
the fuzzy c-means algorithm is that an object can belong
simultaneously to more than one class and does so by
varying degrees called memberships. It distributes the
membership values in a normalized fashion. Tt does not
require prior knowledge about the data to be segmented.
It can be used with any number of features and number of
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classes. The fuzzy c-means is an iterative method which
tries to separate the set of data mto a number of compact
clusters. The fuzzy c-means algorithm 1s summarized as
follows.

Algorithm fuzzy c-means(x, n, ¢, m)

Input: n = Number of pixels to be clustered

X = {X}, X3 500e» Xn}: pixels of real time image

¢ =Number of clusters and centroids are estimated by HSO

m = 2: The fuzziness parameter

Output: u: Membership values of pixels and segmented image

Begin:

Step_1: Initialize the membership matrix vy is a value in (0, 1) and the
fuzziness parameter m (in = 2). The sum of all membership values of a pixel
belonging to clusters should satisfy the constraint expressed in the
following.

S, =1 ®
=

foralli=1, 2,......., n where (¢ =2) is the number of clusters and n is the
number of pixels in the image

Step_2: Compute the centroid values for each cluster ¢. Each pixel should
have a degree of membership to those designated clusters. So, the goal is to
find the membership values of pixels belonging to each cluster. The
algorithm is an iterative optimization that minimizes the cost function
defined as follows:

2

@

xjfc,|

N
_ ™
F=3 X,
=

where urepresents the membership of pixel x;in the ith cluster and m is the
fuzziness parameter.

Step_3: Compute the updated membership values uy belonging to clusters
for each pixel and cluster centroids according to the given formula. If x;is
noisy pixel get the pixel from R(i, j):

! d

U= T 1y, A
c ”XJ -
= i~V (10}

Step_4: Repeat steps 2-3 until the cost function is minimized.

Feature extraction using active contours: Chan-Vese
model for active contours (Chan and Vese, 2001). 1s a
powerful and flexible method which is able to segment
many types of images including some that would be quite
difficult to segment in means of classical segmentation,
e, using thresholding or gradient based methods. This
model is based on the Mumford-Shah functional
(Mumford and Shah, 1989) for segmentation and is used
widely in the medical imaging field, especially for the
segmentation of the brain, heart and trachea (Rousseau
and Bourgault, 2008). The model i3 based on an energy
minimization problem which can be reformulated in the
level set formulation, leading to an easier way to solve the
problem.

RESULTS AND DISCUSSION

In this study, The performance of the HSOFCM is
compared with k-means (Bandhyopadhyay and Paul,
2013), conventional FCM (Zang et al, 2010), FFCM
(Kalaiselvi and Somasundaram, 2011). We present the
experimental results on The Brain Tumor Image
Segmentation (BRATS) Benchmark dataset (Menze ef al.,
2014) 15 used. In this experiment The BRATS dataset 1s
publicly available through the annual Medical Tmage
Computing and Computer Assisted Intervention
(MICCAI) Society brain tumor segmentation challenge
(Menze et al., 2014). The dataset consists of 30 fully
anonymized multi-contrast MR scans of glioma patients
along with expert annotations, i.e., ground truth manual
segmentations. We use 22 images of the FLATR MRI (axial
plane) modality. Figure 3-6 are DS1(Datasetl ), DS2, DS3
and DS4, respectively. The experiments were performed
on a 2.99 GHz Intel Core 2 Duo processor, Windows XP
with 3.21 GB RAM, using Matlab R2012a.

Segmentation results on BRATS data set are shown
inFig. 3. The algorithms k-means (Fig. 3b), FCM (Fig. 3c),
FFCM (Fig. 3d) and HSOFCM (Fig. 3e). From these results
itis obvious that K-Means, FCM, are very sensitive to the
noise while the result and efficiency of FFCM are not
satisfied. Though FFCM provide better segmentation
there exist obvious misclassification pixels. Visually,
the proposed method achieves the better result,
over k-means, FCM, FFCM. Similarly Fig. 7 and 8 achieves
betters results.

Quantitative results: Performance of different image
segmentation algorithm can be compared with following
parameters:

¢+  True Positive (TP): both proposed segmentation
algorithm and Ground Truth (GT) are positive

» True Negative (ITN). both proposed segmentation
algorithm and Ground Truth (GT) are negative

¢ TFalse Positive (FP): proposed segmentation algorithm
result is positive and Ground Truth (GT) are negative

» False Negative (FN). proposed segmentation
algorithm result 18 negative and Ground Truth (GT) 15
positive

Sensitivity = TP/(TP+FN)<100%

Specificity = TN/(TN+FP)=100%

Accuracy = (TP+TN)/(TP+TN+FP+FN)»x100%
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Fig. 3: D31 image; a) Original image; b) k-means; ¢) FCM,; d) FFCM, e) HSOFCM; £) HSOFCM with active contours; g)
extracted feature thresholding on Fig. 3e; h) Ground truth

(d)

© ®

Fig. 4 DS2 image; a) Original image; b) k-means; ¢) FCM, d) FFCM, e) HSOFCM; £) HSOFCM with active contours; g)
Extracted feature (Thresholding on Fig. 4e); h) Ground truth

Computational cost: In terms of computational cost, the spatial information so, it less computational cost. The
objective function of FCM algorithm in its original form enhancement of original FCM, (Verma et al, 2008)
(Schmidt, 2005) containg only the difference between the modified the objective function by adding a term for the
grayscale of the current pixel 1 and the cluster centers V,. spatial information of neighboring pixels. The FFCM
This is basically to cluster grayscales as there is no algorithm is computationally low as it initializes the cluster
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(d)

C} ®

Fig. 5: D33 mmage; a) Original image; b) k-means; ¢) FCM, d) FFCM; ¢) HSOFCM, ) HSOFCM with active contours; g)
Extracted feature (Thresholding on Fig. 5e); h) Ground truth

©)

(e )

Fig. 6 DS4 image; a) Original image; b) k-means; ¢) FCM, d) FFCM, e) HSOFCM; f) HSOFCM with active contours; g)
Extracted feature (Thresholding on Fig. 6b); h) Ground truth

Table 1: Comparison of average classification performance for the proposed Table 2: Comparison in number of iterations

technique and other methods Variables FCM (%) FFCM (%) Proposed method (%)
Variables FCM (%0 FFCM (%0)  Proposed method (%) DS1 81 67 45
Sensitivity 91.4 92.8 96.1 DS2 48 44 22
Specificity 883 90.2 94.7 DS3 62 53 34
Accuracy 92.6 93.5 97.3 D84 56 39 21
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Fig. 7. Comparison of average classification performance
for the proposed technique and other methods
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Fig. 8: Comparison m number of iterations

center with local maxima. The proposed algorithm having
the lowest computational cost 45, 22, 34 and 21 iterations
for DS1-D34, respectively (Table land 2 ).

CONCLUSION

Image segmentation plays a sigmficant role in medical
umage processing. In this study, we proposed a new FCM
algorithm with harmony search optimization technique for
cluster center initialization. Fuzzy c-means can predict
tumor cells. In order to improve the performance of
traditional FCM we developed a new approach that

integrates the HSO and fuzzy c-means algorithm to detect
GBM tumor accurately and in minimal execution time. Our
framework consists of four stages: pre-processing
(de- noising), clustering (HSO based Fuzzy c-means),
extraction of tumor using active contours and validation
stages. From the experimental results, we proved the
effectiveness of our approach m GBM tumor
segmentation by comparing it with traditional FCM and
FFCM algorithms. The proposed system determines the
initial cluster centers from HSO to minimize the execution
time and gets the optimal solution in 45 iterations for D31
where as FCM takes 81 iterations. The performance of the
proposed technique, its mimimization time strategy and
its quality has been demonstrated qualitatively and
quantitatively.
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