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Critical Load of Thin-Walled Rod with Various Cross Section Shape by Length
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Abstract: The compressed rods of lattice structures are considered with a variable cross-section shape along
length at a constant cross section area. The formula of the critical load buckling, differing from Euler’s
formula by the presence the coefficient which takes into account the changes of inertia moments along

arod length.
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INTRODUCTION

During the design of lattice structures such as
farms, frames, power line supports and the
structural components for power engineering objects
(Kopylov et al, 2015, Reshetnikov et al, 2015;
Safin et al., 2015; Misbakhov and Moskalenko, 2015;
Misbakhov ef al, 2015a, b, Laptev et al, 2015
Gatiyatov et al., 2015, Sabitov et al., 2015) the rolling and
cold-formed profiles are used with a constant length of
cross-section area length. Using the abovementioned
profiles creates the obstacles for lattice structure rod
connection components requiring the use of node gusset
plates or epy gauge cutting of connected element ends
(Yang and Lubinski, 1974). In (Kuznetsov et al., 1991,
2000, Kahn, 1966) the lattice structures are considered
which offer the rods with various shape by length and a
constant cross-section area as lattice rods (Fig. 1).

Fig. 1. Latticework scheme a) lattice element (1) of a
variable along the section length (e); b) plane
lattice structure with the belts of square pipes; ¢)
ancther spatial latticework; d) flat lattice structure

with the belts made of corners

MATERIALS AND METHODS

Problem statement: Let’s consider a thin-walled rod
Fig. la-e manufactured from a steel strip section by the
bending of two parallel lines. This rod is angled at the
ends of the profile flanges reverse orientation. The rod 1s
convenient to use as a brace in the lattice structure, as
provided by its easy connection with lap bars “in girth”
no fancy cutting Fig. 1b, e, d. The rod has a straight
central axis 7, a constant cross-sectional area (Table 1)
but its other geometrical characteristics are variable, as
the section form. The works (Kuznetsov ef al., 1998, 1988)
provide the equations of bending with the torsion for the
bars of a similar type at longitudinal compression with the
assumption of possible small initial irregularities and
eccentricities. The equations were derived according to
Timoshenko (1971) scheme, taking inte account the
variabilities of all geometric characteristics along axis 7
and have the followmg form:

k@ k0 koo ko ok, v ko =0 (D
k,u' etk ¢ = ke, @
k11V“+k12V+k13qulzey 3)

In Eq. 1-3, the differentiation 1s performed by z;
variable coefficients k(z) are the following ones:

‘ 1
k,=C,=EJ,; k,=C,(z),C= 5GZbkhi(HO%)
k
k, =-C-p(2y,e, +2xe, %, -y, 2e, R +2e_R_ -1 /F-] /F)

k, =-C-2p(X e, 1Y, &, X, X, ¥,¥, 2P0 (X8, e, )

Corresponding Author: 1..5. Sabitov, Kazan State Power Engineering University, Krasnoselskaya Str. 51, Kazan, Russia
1186



J. Eng. Applied Sci., 11 (6): 1186-1190, 2016

Table 1: Change of rod cross srction

Z F X Y, L 1 ! A (mpa) L

-50 32 -1.00 +1.00 0.0000 2.155 8.555 -45.000 0.812
-37.5 32 -0.75 +0.75 0.2084 1.862 8.848 -33.185 0.763
-25 32 -0.50 +0.50 1.4001 1.355 9.355 -26.565 0.651
-12.5 32 -0.25 +0.25 3.7823 0.968 9.741 -23.424 0.550
00.0 32 0.00 0.00 5.3352 0.829 9.880 -22.500 0.509
+12.5 32 +0.25 -0.25 3.7823 0.968 9.741 -23.424 0.550
+25.0 3.2 +0.50 -0.50 1.4001 1.355 9.355 -26.565 0.651
+37.5 32 +0.75 -0.73 0.2084 1.862 8.848 -33.185 0.763
+50.0 3.2 +1.00 -1.00 0.0000 2.155 83555 -45.000 0.821

Fig. 2: Cross sections of a thin-walled rod

k; = -p(x. e, ., €, X X, Y, ¥, 0 ) plyge, xpe, )

o E(JX +, 0 plx e, -y e, )

ko= p(x,-e,). k, = ple, v, ). k,=El (2 k,=p (4
km - 'p(YD -, )= kl T EJX (Z)> k12 =P k13 - p(ex 'Xn)

R, = igy(xuyz)da R,= igx(xuyz)dl?

Where:

O(x,,y,) = The shift center (torsion) in the principal
central axes of the cross section

€,.8, = The eccentricities of a positive compressive
force p they may vary in various sections due
to an unequal position of the axes x, y, u, ¥
the movement of the point O along the axes x,
y,  torsion angle

E G = Material elasticity constants

by, hy The dimensions of rectangular cross-section
parts

J. ). J, = The sectorial and axial moments of section
inertia

F = Section area

The orientation of x, v, z axis 1s shown on Fig. 1 and
2; a(z)-x, y axis melnation angle Fig. 2. Equation 1-3
is the generalization of Kappus-Tymoshenko-Viasov’'s
equations with the same well-known disadvantages: they
do not take mto account the geometric nonlinearity at the
compression of flexible rods with eccentricity and require

additional analysis at the presence of plastic deformations
1n the case of rod calculation with an average flexibility. In
this study these 1ssues are not addressed.

Geometric characteristics of weakly twisted rod with
variable cross-section: It 1s known that the loss of thin
rod stability 1s associated m most cases with the
simultaneous bending i two planes and twisting.
However, very often the contribution of displacements
u, v, @ in this process is not the same, especially
when the principal bending stiffness of the rod are very
different.

Table 1 shows the change of a rod cross section
geometric characteristics along the axis 7Z for the
following option: the corners at the ends 40>x40x4 mm; the
length 1= 100 cm. Table indicated the following: x_, v, the
center of gravity coordinates for each section in the
system x,, y; , agreed with the central section (Fig. 2), T,
J. inthe main local central axes of each section.

On the upper end (Fig. 1); ¢-x, y axis inclination
angle in each section. All the data of Table 1 in cm and cm
powers. Table 1 shows that during the transition from the
upper end to the central section the principal axes rotate
at 22.5° and then at the transition to the lower end, they
return to the initial position.

RESULTS AND DISCUSSION

Numerical calculation of thin-walled rod using computer:
The maximum rotation from the principal axes of the
central section makes o = 22.50° on the ends. The
value I, and m each section the displacement v will be
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Table 2: Numerical calculations of same rod

P ux10’ vx10® px10” detx102*
80 -0.0500 -0.4705 -0.0029 -0.8735
400 -0.2542 -2.816 -0.0849 -0.8704
720 -0.4656 -6.306 -0.3393 -0.7998
1040 -0.6845 -12.03 -0.9258 -0.6718
1360 -0.9111 -23.14 -2.300 -0.4962
1680 -1.144 -53.71 -6.508 -0.2819
2000 -1.342 -512.21 -72.77 -0.0371
2045.76 +98.51 -0.96: 106 -0.14-106 -0.20-104
2046.08 -9.898 +0.81-105 +0.12-105 +0.24-10-3

significantly greater than the displacement u This is
confirmed by computer data. Let’s name the equation
systems Eq. 1-3 conditionally accurate. Table 2 presents
the results of numerical calculation using the computer of
the same rod, loaded with the eccentricities at the ends of
e, = e, = 0.0001 cm (Fig. 2). By the change of values ¢ and
e, because of the axes rotation in the intermediate
sections at the angle of o = 22.5° (Fig. 2) we neglect it,
because of a small eccentricity. Initial parameters: the
angle 40>40=4 mm; the length | = 100 cm; e, = ¢, =
0.0001 ecm; E=2x106kgf cm >, p=0.3; G =E/[2(1+)]; the
securing of the ends corresponds to the following
terms:

u=u=0,v=v=0,0=¢ =0 (3)

1w, v, (@ in Table 2 maximum values of these functions; det
to determine the algebraic system of linear equations
corresponding to Eq. 1-5 after the problem sampling.
Quantity dimension in Table 2: kg, cm, rad. The value of
the force p = 2045.76 kgf, after which det changes the sign
should be recognized as a critical one.

Critical load formulae: Let's consider the central
compression case e, — ¢, = 0. We have a certain
understanding about the mutual relative orders of the
value u, v, ¢ from Table 2. In the Eq. 1-3 we get the
following evaluations at any load value:

. _k v,P ok XoP
0l p= 208 gy 2l g = 200 (6)
kg(p EJy(p k“(p EJl,

at the evaluation of the equation elements m the
vicinity of the ends (Table 1 and 2) it should be borne in
mind that:

u:v:(p:unzv“:(p“:o

Then, the equations for u, v, ¢ are divided. At that
the critical load determined from the equation for u, will be
clearly excessive because of a high bending stiffness in
the respective directions of cross sections. The equation
for the angle ¢ in this problem also provides the critical
load apparently which is no less than the equations for v,

the solution of which is in a good agreement with the
exact solution of the complete system 1-3 in a wide range
of lengths and flexibilittes. Let’s put down Eg. 3
taking mto account the evaluations Eq. 6 in the
following form:

B(z)v (z2)+pv(z) = 0; [B(z) =EJI_(2)] (7

which corresponds to the bending u = ¢ = 0 in each
section. In a good accordance with Table 1, we
assume that:

B(z) = a,+a,7’ (8)

Denoting;

B, =B.4:.B,= B,

we get:

a,=B,, a,=4(B,-B,)/I’ @)

0

and Eq. 7 takes the following form:

@tV =0 (10)

(a,+a,z*)v

Let’s take collocation method. Let
v(z) = blcos[jtl'z}rbzcos[mf'zJ (11)

taking into account the first two harmonics of the
movement v(z). In this case, the boundary conditions
(Eq. 3) and the Eq. 10 at z = -1/4 and z = 0 we obtain the
system of two linear equations

b, (p-C)+b,(p-C,) =10
b, (p-C;)+b, (-p+C,) =0

(12)

Where:

C, = a,(n)

C, = a,(3n/1)

C, = (aj+a,l* 16/D) (/1)
C, = (a7+a,2 16/1) 3m/1Y

8}

[}

From the system determinant Eq. 12 equal to zero, we
obtain the following:

pi-pS()’ (2a,+a 1*/16) ()’ (13)

From which taking into account Eq. 9:

2
T
Py = [1} EIy (149
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Where:

y= ;(’HB)P + 1;;1(3+B)/(7+B)2} (15)

B
B:B_IZJS)/JS);JS):Jx|z=ﬂfz'=JS):Jx|z=D (16)

2z

Atall B0 the radical expression in Eq. 15 is a positive
one and the Eq. 13 has 2 real positive roots, the smaller of
which provides the first critical load Eq. 14 with the sign
(-)1n Eq. 11. For the constant section rod Ej, (z) = const;
a, =0, =1,y =1. Then according to the Eq. 14 we obtain
the following: py, = (n-1)* Ej, which corresponds to Euler’s
formula for a constant section rod. The second root of the
Eq. 13 1n this case 1s nine times greater and corresponds
to the second harmonic of the Eq. 11. Let’s compare the
solution Eq. 14 with the numerical solution of the problem
1-3, 5 using a computer for a variety of flexibilities. Let’s
introduce the conditional (secondary) flexibility:

)\‘pz “‘Ul/lfmn7 “Uz 1’ lﬁnnz iglgn (17)
k

where, 1%, are taken from Table 1 (Table 1 values depend
on section values and the length 1 ). Let’s emphasize that
at the derivation of the Eq. 14, the average flexibility
was not used and even its concept was not introduced.
Fig. 3:

e GK {1 )

OKpiL2)

e (JH ) 3)

Fig 3: The graphs of durability dependence on flexibility

Table 3: Critical external compression stress

Agp Ot Ty o(1,2% o 0(1,3)%
40.0 8662.6 8156.5 -5.84 12337.0 42.4
44.4 7033.2 6606.8 -6.06 10013.0 42.4
592 3074.5 3716.3 -6.50 5632.2 41.7
74.0 2549.4 23784 -6.71 3604.6 41.4
88.9 1772.6 1651.7 -6.82 2497.6 40.9
103.7 1303.3 1213.5 -6.89 1835.6 40.8
118.5 9983 920.1 -6.93 1405.7 40.8
133.3 789.0 7341 -6.96 1110.9 40.8
148.1 639.3 594.6 -6.99 899.9 40.8
162.9 5284 491 .4 -7.00 743.8 40.8

shows the values of the critical external compressive
stresses: 0y, “exact solution”; ¢  Pthe solution
according to the Eq. 14; in both cases 0= py/F (I =
const).

The calculations were performed for different variants
of end corners and the length 1. The curves 0 (A,) were
absolutely identical in all variants; the curves 6%y, (4,)
were also 1dentical. This result 1s important and was not
obvious beforehand. Sometimes they male attempts to
solve such problems by substituting some average
flexibility in Buler’s formula. Figure 3 shows the values of
0%, = TE/A’, where A’ Eq. 16 was taken. The exact
values 0y (kgf/cm?) and errors

8(1,3) % = 100%[05; _05(2 ]/Gg;,

8% = 100%[ 0% -0}y /0%,

Are presented i Table 3. The following follows rom
Fig. 3: at Ay, = 40 the Eq. 14 adequately reflects the
essence of the considered buckling process with a little
underestimation of the values py, or 0y, in stability margin
(no >7%). The study of the Eq. 14 for the sections of other
variables may change if the section shape changes
smoothly and the table of T, values is symmetrical in
respect of a single extremum in the center. In any case a
preliminary deep analysis of a problem 1s required. As for
the stresses 0, = n°E/A’, on Fig. 3 they are far from
exact values. However, introducing an empirical
correction factor, we obtain the formula which provides

&)}

the critical stresses close to 0, with a maximum error of

no >1.2% for area decrease Eq. 14:

z

@ _ TE
ol = R (18)
cp
X, =0.70175 (19)
CONCLUSION

On the basis of the above mentioned information one
may conclude that the proposed formulas allow their use
in the practice of lattice structure design which have a
good agreement with the known procedures obtained by
computer. The formulae for the critical load determmation
were obtained for the proposed new structural forms of
lattice structures made of steel thin-walled formed
sections. The scientific novelty and the practical
effectiveness of these rods is confirmed by the mvention
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patents but their use and their introduction into
production was held back so far by the lack of a
theoretical base for the calculation of such rods
stability.
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