Tournal of Engineering and Applied Sciences 11 (6): 1168-1171, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

Real-Time Operating Systems for Wireless Modules

"Danil Aleksandrovich Yaroslavsky, 'Dmitry Alekseevich Ivanov, "Marat Ferdinantovich Sadykov,
"Mikhail Petravich Goryachev, *Oleg Gennadievich Savelyev and *Rustam Shaukatovich Mishakhov
'"Federal State Budgetary Educational Institution of Higher Education,

“Kazan State Power Engineering University”, 51 Krasnoselskaya St., Kazan, Russian Federation
*PISC TATNEFT, 75, Lenin St., Almetyevsk, Russian Federation
*Federal State Budgetary Educational Institution of Higher Education, A N. Tupolev
Kazan State Technical Research University KNRTU-KAL 10, K. Marx St,,

420111, Kazan, Republic of Tatarstan, Russian Federation

Abstract: We develop Process Automation Wireless (PAW) modules to mteract with the commumication
protocols Bluetooth, Wi-Fi, PLC, Ethernet, USB, RS-485, ItDA designed to monitor the status of objects,
enterprises and public buildings automation through information collection and transmission from external
sensors, automatic retransmission of data transmitted, etc. The study describes how to choose an operating
system for the wireless single-chip microcontrollers of lowest price range.

Key words: Wireless interface module, line of modules, wireless network, automation system, a set of
parameters, method of transmitting information, control protocol

INTRODUCTION

Each year, the share of automated systems in
various Process
automation can reduce power consumption, ncrease

resource

industries in the world increases.
efficiency and productivity as well as
significantly expand the functionality and comfort
(Kopylov et al, 2015, Reshetnikov et al, 2015;
Safin et al., 2015, Misbakhov et al, 2015a, b;
Misbakhov and Moskalenko, 2015. Laptev et al., 2015,
Gortyshov ef af., 2009; Burganov ef al., 2016). However,
implementation of automated systems in some cases 1s
limited by their high cost and low profitability as a result.
In particular, the use of such modules as for example,
ZigBee XBee, etc., in automated systems is limited due to
their high cost. The high cost is caused by import origin
of the modules, redundant hardware and software m most
cases, 1.¢., there 13 an inefficient price from the pomt of
view of customer’s needs.

Experimental PAW module prototypes having a
possibility to mteract with the commumication protocols
Bluetooth, Wi-Fi, PLC, Ethemet, USB, RS-485, IrDA are
designed for monitoring object statuses, automation of
enterprises and public buildings by collecting and
transmitting information from external sensors, automatic
retransmission of data transmitted; creation of large area
continuous information coverage with a broadcast access

to all nodes on the network. For PAW modules there will
be developed special software realizing the following
functions:

» Local and remote object management
» Self-diagnostics of PAW modules
communication channels

and their

¢ Ability to customize by an operating personnel

» Network self-healing function upon loss of several
componernts

» Network self-orgamzation

s Ability to configure manually a network topology

MATERIALS AND METHODS

Methods of choosing a real-time operating system for
wireless modules: For this purpose, let’s consider which
operating systems are suitable for single-chip wireless
microcontrollers of the lowest price range. The following
architectures ATmegal 28, CC 25xx, CC26xx, STM32ZW,
ESP82xx were selected. Of many operating systems with
open source, Contiki, FreeRTOS and TmyOS are best
suited for our purposes. We excluded operating system
TinyOS from the list since it has the only supported
architecture that satisfies the above requirements, namely
ATmegal 28 what can make 1t difficult to port to another
architecture.

Corresponding Author: Danil Aleksandrovich Yaroslavsky, Federal State Budgetary Educational Institution of Higher Education,
“Kazan State Power Engineering University”, 51 Krasnoselskaya St., Kazan, Russian Federation
1168

J. Eng. Applied Sci., 11 (6): 1168-1171, 2016

Operating system Contiki was designed for systems
with limited memory. The source code for the operating
system is written in C. The processes in Contiki are event
driven. Reenterability extras were excluded by placing the
process manager (scheduler) at the application level
(Bourdenov et al., 2006). The control transfer process
takes place when an event occurs addressed to the
process, or in the case of a broadcast event when all
processes alternately receive control. Parallel execution of
several processes and the process preemption are not
possible; the process runs until it returns control to
the scheduler: multitasking n Contiki 18 cooperative.
Processes can generate any events. All processes in this
operating system are organized in a form of conventional
programming language functions, thus the obligation to
preserve process context is completely entrusted to the
compiler. A finite-state-machine model of the program
15 orgamized through the use of special macros in
processes.

Skeleton of a typical program in Contiki:
#include “contiki.h”

PROCESS(example process, “Example process™)
AUTOSTART PROCESSES(&example process)
PROCESS_THREAD(example_process, ev, data)

PROCESS_BEGIN(Q

while(1) {
PROCESS_ WAIT EVENT()
printf(**Got event number %od'n”, ev)

}
PROCESS_END()
}
Here contikih file includes the necessary OS
definitions. PROCESS macre creates a control

structure of a process that will store its state. Macro
AUTOSTART PROCESSES put the process in startup
procedure. Macro PROCESS THREAD creates a function
(process) which will be called by the scheduler.

Macros in a function organize state switching. This
is possible due to the fact that the block “case” of the
control structure “switch” in C language can be placed
inside other control structures such as “if” and “while”.

Macro PROCESS_BEGIN sets the selector:

char YIELD = 1; switch (state) {case 0:

Macro PROCESS WAIT EVENT accommodates the block “case™:
YIELD = 0; state = LINE ; case LINE : if ((!YTELD)) return
PT WAITING

Macro PROCESS_END closes a selector

Between macros PROCESS_BEGIN and PROCESS_END there also can be
placed other interrupting (returning control to the operating sy stem) macros
PROCESRS EXIT (); #/ End of the process
PROCESS WAIT EVENT UNTIL (); // Waiting for events with a certain
condition

PROCESS_WAIT_UNTIL (}; // Wait for the condition
PROCESS_PAUSE (); /f Temporary suspension of the process

RESULTS AND DISCUSSION

Adverse event of this macros is the mability to use
the statement “switch” the body of which has the above
macros. Multiple interfaces for working with a timer are
implemented in the operating system: clock, timer, stimer,
etimer, ctimer, rtimer. Interface “clock™ allows obtamning
the system time values m ticks (clock time function) or
seconds (clock seconds) and also to make CPU blocking
at a certain time (clock wait, clock delay).

The mterface “timer” 1s based on the function
clock time of the interface “clock™. Setting the timer 1s
carried out by function timer set. Check for excess of an
interval can be done only manually by function
timer expired.

The mterface “stimer™ 1s similar to “timer” except for
that the intervals are specified in seconds. The interface
“etimer” is also based on clock time function, difference
from the above tumers is that the timer sends
PROCESS EVENT TIMER event after expiration of a
preset time interval. The interface “ctimer” after expiration
of a preset time interval calls the specified function
“callback”. The mterface “rtimer” uses a hardware real
time tumer with high resolution. It 1s used mn time-critical
tasks. This timer is architecture-dependent and does not
use real-time system clock. After expiration of a preset
time 1nterval a timer mterrupt handler runs the specified
function “callback”.

The OS Contiki has a light-weighted TCP/TP stack
called ulP and compatible with TPv4 and 6. There is also a
simple proprietary protocol named Rime (Dunkels, 2016).
To work with a radio module, IPv6 protocol 1s
encapsulated by 6loWPAN protocol and TPv4 protocol
can be encapsulated in Rime.

UDP core of IPv6 protocol server:
PROCESS THREAD{udp server process, ev, data)
{
PROCESS BEGIN(
server_conn =udp_new(NULL, UIP_HTONS(0), NULL)
udp_bind(server_conn, UIP_HTONS(3000)
while(1) {
PROCESS_WAIT _EVENT()
if{ev = tcpip_event) {
memset(buf, 0, MAX_PAYLOAD LEN)
if(uip_newdata()) {
len =uip_datalen()
memepy (buf, uip_appdata, len)
uip_ipaddr copy(&server comm-=>ripaddr, &UIP TP BUF-
=srcipaddr)
server_conn->rport = UIP TUDP BUF-=srcport
uip_udp_packet_send(server_conn, buf, len)
uip create unspecified(&server conn-=ripaddr)
server_conn->rport =0
}
)
PROCESRS END()
}

1169

J. Eng. Applied Sci., 11 (6): 1168-1171, 2016

Here function udp new creates a connection
descriptor. Function udp bind opens a listening port.
Function wip newdata returns “true” if a message 1s
received. Function wip udp packet send sends the
response to the client.

Operating system FreeRTOS is designed for portable
devices with a “stringent” real time. The source code for
the operating system 1s written in C. The OS kernel can be
flexibly configured so, the operating system can have
preemptive or cooperative multitasking. The use of a
cooperative multitasking saves memory but imposes
stringent timing requirements on the application code.
Priorities are assigned to processes in the operating
system, so the task with the highest priority in a queue
will be executed first.

Data exchange between tasks 15 performed through
queues, binary and counting semaphores. The core of the
program (task) in the case of cooperative multitasking is
as follows:

void main(void)
/ Tnitialize the necessary equiprment

/1 Create a task

xTaskCreate (vTask, “Task”,
NULL, tskIDLE PRTIORITY, NULL)

/f Start the Task Scheduler

vTaskStartS cheduler ()

configMINIMAL STACK SIZE,

}

static void vTask(void *pvParameters)

for(s;)
{
if (nothingToDo) task YIELD()
// Do something that longs not more than a few system ticks

In fact, the only difference in the case of preemptive
multitasking is that it is permissible not to call task YTELD.
There are two types of timers m the operating system
FreeRTOS, the first one is program with low accuracy and
the second one 1s high precision hardware being more
resource-intensive. Both timers call the function specified
when creating the timer after expiration of a specified time
interval. Tn addition to the timers in the case of preemptive
multitasking it 1s allowed to use delays wnplemented by
function vTaskDelay. Program timers come in two types,
a one-shot timer and timer with auto-reload. Working with
a one-shot program timer is as follows:

staticvoidvTask(void *pvParameters)

xOneShotTimer = xTimerCreate(*Timerl”, /* Name for
debugging * /
ONE SHOT TIMER PERTOD, / * Response period® /

pdFALSE, / * Without autoreload * /
TIMER_ID, / * Timer identifier * /
prvOneShatTimerCallback); / * Called function * /
if (xOneShotTimer) xTimerStart (xOneShotTimer, DONT_BLOCK);
for ;)
{
{{ Do anything

}

static void prvOneShotTimerCallback (TimerHandle t pxExpiredTimer)

{
/f Do anything
if (Allrigth) xTimerReset (xOneShotTimer, DONT BLOCK)

of the
adopted m FreeRTOS may be considered among the

Hungarian notation source code
features of the operating system. Stack ulP is ported in
FreeRTOS and work with it has no fundamental
differences from work with Contiki. In new FreeRTOS
versions stack ulP is replaced by a more “heavy” IwIP. In
this operating system there are no radio module drivers
for “small” crystals in particular for the controllers on the

core 8051.
CONCLUSION

The most suitable operating system for this problem
15 Contiki. Its distribution kit includes all the necessary
components. The system takes about a hundred bytes of
RAM for its own needs with minimal configuration. For
most of the studied modules exactly this operating system
was used. The only exception were the modules based on
ESP8266 crystal for which the manufacturer has
successfully ported FreeRTOS.

ACKNOWLEDGEMENTS

Work on creation of software for process automation
wireless modulest 1s performed with the financial support
of applied research and experimental developments
(PNIER) project of the Ministry of Education and
Science of the Russian Federation under the Agreement
No. 14.577.21.0168 dd. 27 October 2015, the umque
1identifier PNIER RFMEFI57715X0168.

REFERENCES

Bourdonov, LB, A.S. Kosachev and V.N. Ponomarenko,
2006. Real-time operating systems (Electronic
resource). Preprint of the Institute for System
Programming, Russian Academy of Sciences.

1170

J. Eng. Applied Sci., 11 (6): 1168-1171, 2016

Burganov, R.A., R.S. Misbakhov, V.M. Gureev and
L.R. Mukhametova, 201 6. Methodological aspects of
the driver of economic growth and energy. Int. Sci.
Res. T, 72: 189-195.

Dunkels, A., 2016. Rime-A lightweight layered
commumication stack for sensor networks (Electronic
resource). Proceedings of the European Conference
on Wireless Sensor Networks, January 2007, The
Netherlands.

Gortyshov, Y.F., V.M. Gureev, R.S. Misbakhov,
LF. Gumerov and A.P. Shaikin, 2009. Influence of
fuel hydrogen additives on the characteristics of a
gas-piston engine under changes of an ignmtion
advance angle. Russian Aeronautics (Iz VUZ),
52: 488-490.

Kopylov, AM., L.V. Tvshin, A.R. Safin, R.S. Miesbachov
and R.R. Gibadullin, 2015. Assessment, calculation
and choice of design data for reversible
reciprocating electric machine. Int. J. Applied Eng.
Res., 10: 31449-31462.

Laptev, A.G., R.5. Misbakhov and E.A. Lapteva, 2015.
Numerical simulation of mass transfer in the liquid
phase of the bubble layer of a thermal deaerator.
Thermal Eng., 62: 911-915.

1171

Misbakhov, R. and N. Moskalenko, 2015. Simulation of
heat transfer and fluid dynamics processes in
shell-and-pipe heat exchange devices with segmental
and helix baffles in a casing. Biosci. Biotechnol. Res.
Asia, 12: 563-569.

Misbakhov, R.S., V.M. Gureev, NI Moskalenko,
AM. Emmakov and I1Z. Bagautdinov, 2015.
Simulation of surface mtensification of heat exchange
i shell-and-pipe and heat exchanging devices.
Biosci. Biotechnol. Res. Asia, 12: 517-525.

Misbakhov, R.S., V.M. Gureev, N.I. Moskalenko, A.M.
Ermakov, N.I. Moskalenko and 1.Z. Bagautdinov,
2015. Numerical studies mnto hydrodynamics and heat
exchange in heat exchangers using helical square and
oval tubes. Biosci. Biotechnol. Res. Asia, 12: 719-724.

Reshetnikov, AP., I.V. Ivshin, N.V. Denisova, A.R. Safin,
R.5. Misbakhov and AM. Kopylov, 2015,
Optimization of reciprocating linear generator
parameters. Int. J. Applied Eng. Res., 10: 31403-31414.

Safin, AR, LV. Ivshun, A M. Kopylov, R. Misbakhov and
AN. Tsvetkov, 2015. Selection and justification of
design parameters for reversible reciprocating electric
machine. Int. J. Applied Eng. Res., 10: 31427-31440.

	1168-1171_Page_1
	1168-1171_Page_2
	1168-1171_Page_3
	1168-1171_Page_4

