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Abstract: A modified MPS method has been proposed and implemented in simulations which generated smooth
computational pressure fields. The method utilizes of one row wall boundary condition. This property has the
ability of defimng complex geometries. In this study, flow over flip bucket has been sumulated which has curve
line m its geometry. The applied method eliminates unphysical pressure fluctuations that occur in original MPS

method.
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INTRODUCTION

Due to advances m computer technology and
developments in numerical methods, numerical
simulations of various phenomena are in interest. Utilizing
of numerical simulations may cause to decrease number of
physical modeling which causes to decrease of costs and
efforts. Among of various Lagrangian methods, Moving
Particle Semi-implicit (MPS) and Smooth Particle
Hydrodynamics (SPH) methods are widely used in
engineering problems such as astrophysics (Gingold
and Monaghan, 1977), continuum solid (Hieber and
Koumoutsakos, 2008), fluid mechanics (Koshizuka and
Oka, 1996) and heat transfer (Clearly, 1998). Using
Lagerangian methods, problem of mesh adaptability and
comnectivity eliminated because in this method, the state
of a system is represented by a set of discrete particles,
without a fixed comnectivity; hence, such methods are
mherently well suited for the analysis of large
deformations and fragmentations (Asai et al, 2012).
Moreover, mumerical diffusion 1s elininated 1n
Lagarangian methods due to the existence of advection
terms in the Navier-stokes equations (Shobeyri and
Afshar, 2012).

Furthermore, detecting of the free surface simply
1dentified n Lagrangian methods using a sinple criterion.
In this study, modified MPS method is introduced and
umnplemented in simulations. MPS method originally
proposed by Koshizuka and Oka (1996) is a fully
Lagerangian method that is based on particles
characteristics and their movement. Characteristics of
fluid/material such as density, viscosity, velocity and
pressure are assigned to each particle and coordmates of
particles are calculated based on these properties and
mitial conditions using MPS discretization of goverming
equations. The governing equations are mass and

momentum conservation that are solved in Lagrangian
form using a two-step fractional method. In this manner,
each time step 18 divided into two basic steps. At the first
step or prediction step, the equations governing the flow
characteristics of the fluid particles are solved without
considering the pressure term and the provisional velocity
and position of each particle are obtained Because of
omitted pressure term in first step in governing equations,
an unaccepted compressibility oceurs in fluids. Hence, in
the second step or correction step the mcompressibility
must be enforced in the calculations through of an
equation of state in WC-MPS or Poisson equation of
pressure in I-MPS method Despite of advantages of
particles method and numerous successes m MPS
simulations in hydraulic problems such as dam break
(Koshizoka and Oka, 1996; Asai ef al., 2012), Solitary
wave (Monaghan and Kos, 2000; Ataie-Ashtani et al.,
2008), open chamnel flows (Shakibaeinia and Jin, 2009;
Husain ef al., 2014), hydraulic jump (Lopez et al., 2010},
multi-phase flow (Shakibaeinia and Tin, 2012), sloshing
flow (Gotoh er al, 2014), fluid-structure mteraction
problems (Hwang et af, 2014), this method 1s rarely
implemented in problems with curved boundaries due to
difficulties in assigning particle number density for
particles on curved boundaries. Tn this study, some
modifications i I-MPS method are proposed and applied
in simulations that cause to obtain more smooth
computational pressure fields. Proposed method has the
ability of use of just one row wall boundary which
simplifies defining. Complex geometry with curved lines.

MATERIALS AND METHODS

Governing equations: The governming equations of
viscous fluid flows that are mass and momentum
conservation equations are presented in the following:
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Where:
P The density
u The velocity vector
t = Thetime
P = The pressure
i = The dynamic viscosity and is the gravitational

acceleration

In Lagrangian coordinates the convection terms are
directly calculated by the motion of particles, therefore,
they are removed from the left side of the momentum
equation. The right side terms expressed by differential
operators should be replaced by particle mteractions.

Particle interaction models: MPS interaction model 1s
built on a set of disordered points in a continuum without
a grid or mesh. A particle (i) interacts with others (j) in its
vicmity covered with kemel function wi(r;, r.) where r; 15
the distance between particles 1 and j and r, 15 the cutoff
radivs of the mteraction area. The kemel function 1s
considered as a smoothing function of physical quantities
around each particle. In this study, modified Wendland
2D kernel function is employed Fig. 1:
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Tt is possible to apply another kernel function which
15 often used m literatures such as B-Spline or MPS
standard kernel function. A dimensionless parameter that
15 called particle number density, represents the density
of particles and denotes by:
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Tn this Equation, the contribution from particle itself
15 not considered. Fluid density i1s proportional to the
particle number density and defined as Eq. 5:
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m 1s the mass of each particles and assumed to be the
same for all particles of determined fluid. Thus, the
contnuity equation 1s satisfied if the particle number
density is constant. This constant value is denoted by n°
(Koshizuka and Oka, 1996). Differential operators such as
gradient and Laplacian, are represented by the following
particle interaction models using the weight function:
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Where:
d = The number of spatial dimensions
¢ = Anarbitrary scalar.

The Laplacian model parameter A is a correction
parameter which cause variance increase be equal to the
analytical solution and is defined as:

A= _L w(rr’dv / le wir)dv (8)

The current model of Laplacian is conservative since
the quantity lost by particle 1 1s just obtained by particles
j (Fadafan, 2014).

I-MPS solution algorithm: Implying projection method
(Cummins and Rudman, 1999) for time integration, each
time step 1s split into two parts of basic steps namely
prediction and correction. Following figures depicts
original and modified MPS algorithm (Fig. 2 and 3).

Wall solid boundaries
represented by one line of particles. The Poisson equation
of pressure is solved on these particles. In the absence of

Boundary conitions: are

any contrivances, by approaching solid boundaries, the
density of particles decreases which causes to recognize
the wall particles as free surface particles (Koshizuka and
Oka, 1996). Thus, several lines of dummy particles are also



J. Eng. Applied Sci., 11 (4): 788-794, 2016

Initialization:
definition of geometry. particle characteristics. and fluid properties
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Calculation of particle number density and 7. parameter for central particle i.
which has complete number of neighbors base on cutoft radius. re
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Second step
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Calculation of particle number density for each particle
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Definition of free-surface criterion and determining free-surface particles
(Zero pressure particles)
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Solving pressure Poisson equation
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Fig. 2: Original MPS algorithm

placed outside of solid walls in order to keep the fluid
density at the wall particles in standard MPS method. The
thickness of dummy particles depends on the kernel range
(Shao and Lo, 2003). However, in this study, dummy
particles are eliminated in our I-MPS method and less
value for criterion parameter () together with an auxiliary
function are used for wall particles. The present method
enables us to simulate curved wall boundaries which are
of the interest in particle methods.

End of simulation (Y/N)

Free surface particles: Known presswe boundary
conditions are prescribed to the surface particles. Since,
no fluid particle exists in the outer region of a free surface,
the density of particles decreases by approaching the free
surface. A particle which satisfies the following equations
1s considered as a free surface particle:

ped
0
<nre>1 <Blnre (11)
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if the

. 1 %f numbfel." o.f fluid Pafﬂdic> ©) where, B, are the free surface parameters. This parameters
i) in the vicinity of particle i >1 are not effective to the calculation results
0 otherwise calculation proceeds stably (Koshizuka and Oka, 1996).
Usually parameter is chosen from 0.8-0.99.
B, 0= 0-3Bsig (rad.lus cutoff =2.41,) (10)  Inflow boundary: Some layers of particles with prescribed
B, otherwise
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velocity equal to mnlet velocity are defined at the inflow
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Initialization:
definition of geometry. particle characteristics, and fluid properties

i

Calculation of particle number density and A parameter for central particle i,
which has complete number of neighbors base on cutoff radius. re

"y = ZM‘ (r,.r.)
F

l:_[u‘(r')r:dv/[w (r)dv

First step

Calculation of particle number density for each particle, ni

(n°Y =Fwe)=3wlr, -1

Calculation of intermediate velocity field and provisional particles position
- 2 -
Au =(vViu' +g)As
* M *
u =u +Au

* . =
r =r +u Ar

Second step

l

Calculation of particle number density for each particle

<”.>; :ZM‘ r,,.r)
=

Definition of free-surface criterion and determining free-surface particles
(Zero pressure particles)

(o) <Bnt & (n..,) <Bml.,

2d

(7). comena*

Solving pressure Poisson equation

Sl -pwdr, -rh]=-

e <”*>£ -(n°).

A7),

—Ar

2d

Calculation of pressure gradient of particles and enforce the incompressibility

P 4P

R Y R A i o]

s, —rwllr, —r D)

ral

i+l

r

Modification of particles velocities and positions
* "
=u +u

=r +u'""Ar

Fig. 3: Modified MPS algorithm

boundary to compensate for density deficiency. The
particles on the inner first line of these particles are
involved in the pressure calculation. Inlet particles are
added to the distance between these layers and the fluid
particles. For inlet particles, velocity in the flow direction
is set to known velocity inflow until these particles move
far from inlet position at least equal to a determined
distance such as 1,1, is the initial distance between
neighboring particles in the initial configuration. Inflow
particles are added to mflow boundary each K time step,
based on inflow velocity, time step size and distance of
particles.

Qutflow: Each particle leaves the computational domain,
eliminated from the computations.

End of simulation (Y/N)
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RESULTS AND DISCUSSION

Model applications: Dam break: Dam break problem
experimentally implemented by Hu and Kashiwagi (2004)
18 simulated using proposed I-MPS to show the accuracy
of the method. The geometry of the experimental set up is
shown n followmg Fig. 4-6.

Flow over a flip bucket: In this example, experimental
study of (Heller et al., 2005) 18 used to simulated flow over
a flip bucket. Their experiments were conducted in a
rectangular channel with the total length of 7 m. The flip
bucket consisted of a 1 m long horizontal approach
channel. Schematic view of the experimental setup is
shown in Fig. 7.
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Fig. 6 Comparison of pressure history at the evaluation point (point A in Fig. 4) using present method and experimental

results
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Fig. 7: Schematic view of flip bucket

Heller et al. (2005) suggested following equations to
evaluate the location of maximum pressure, maximum
pressure and pressure distribution on a flip bucket based
on 91 case tests on six bucket deflection angles (), tree
bucket Radn and the approach flow depth (hy) in the
range of 0.036-0.095 m:

Xy /RSinB = «(1.5° /B for B=215°  (12)

hy, /hy = (1/35)B/ 40"
if (h, / R)40° /8)20.20

(13)
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hy /hpy = [Xpwexp(1-Xpy, )]1 ’ (14)

¥y the
(%py = %Xy and 1s the location of maximum dynamic
pressure head. Approach flow depth of 0.04 m, Froude
number of 3, bucket deflection angle of and bucket radius

where, herizontal normalized coordinate

of m is used in the simulation, results are depicted in
following Fig. 8 and 9. Since, Eq. 14 not considered the
effect of x/A(R sin fywith p, following equation (Juon and
Hager, 2000) is used to compare the results:
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h -h 2/3
_ Tt T 15
H, T [ 20, Jexp(1+2(X,)) | (15)
where 13 X, = x/R s} dimensionless coordmate.

Calculated non-dimensional pressure distribution over flip
bucket invert and empirical formula result are compared in
Fig. 10. As Fig. 10 shows there is good agreement
between MPS results and empirical formula. This figure
shows the accuracy and the ability of presented I-MPS to
simulate the problems that consist of curved lines in their
solid boundaries.

Obtamed computational pressure field of this problem
is in good agreement with pressure field computed by
Shirkham et af. (2014) using WC-SPH.

CONCLUSION

MPS method in its original form suffers from
unphysical pressure fluctuations and use of this method
without any contrivances accompanies serious pressure
oscillations and numerical explosions. In this study,
modified method has been used and new MPS algorithm
solution with different modifications on Poisson pressure
equation, gradient and Laplacian operators, wall boundary
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condition and free swface criteria introduced and
implemented n simulations. As results shows pressure
oscillations damped and smooth computational pressure
field obtamed. Modification on wall boundary condition
redounded to simplify of utilizing MPS method for
simulation of problems with curved lines.

Results of simulation of flow over flip bucket as a
problem with curved line in its geometry shows the
accuracy and ability of suggested method.
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