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Abstract: The prediction of the structural classes of protems 1s an important classification issue in
bioinformatics research. Knowledge of these classes will give a clear understanding of the protem folding
process. For this reason, research into the prediction of protein classes has become a major topic of concern.
This research intends to discuss new development of features based on secondary structures information of
proteins and hydropathy profile that categorized proteins into all-c, all-B, «/p and e+ with each category being
vital in pinpomting the proteins” structural classes. The folding pattems, fimetions and interactions between
proteins is reliant upon the accurate prediction of its structural classes. This is especially true if one intend to
synthesize new proteins possessing unique functionalities. This is however a complex undertaking, especially
for structural classes of low-similarity sequences. There are a few computational methods being developed for
this purpose (25-40%). The accuracy of the proposed method 1s on par with current methods being reported

in literature.
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INTRODUCTION

Levitt pioneered the classification of protein
structures. Being aware of structural classes will decrease
the search space for the conformations of tertiary
structures  (Chou and Zhang, 1995), help to
analyzeproteins functions, drug designing (Zhou, 2001).
Generally, globular protein domains are divided mto all-g,
all-P,a+p and a/P, based on the types and configuration
of their respective secondary structural elements. Due to
this fact, previous works proposed multiple structures of
protein domain classification methods that are derived
from protein sequences; however, information pertaiing
to this approach remains limited.

Structural Classification of Proteins (SCOP)
(Murzin et al., 1995) 15 a manually noted database which
15 considered as the best classification approach of
the structural classes of proteins. Tts latest version
encompasses 11 structural classes with ~90% of the
domains of protein belonging to 4 main classes (all-q,
all-p, a/P, a+P). With the fast increase of the proteomics

and genomics, current experumental methods are regarded
as being complex, time-consuming and face many
limitations in determining protein structures. (X-ray
crystallography, NMR “Nuclear Magnetic Resonance”
and ESR “Flectron Spin Resonance”. Tt is therefore salient
that anaccurate and fast computational method be
developed to confirm the structural class for newly
discovered proteins. These efforts are generally divided
into: feature vector and classification algorithm. Current
approaches have been extensively studied by (Chou,
2005; Kurgan et al., 2008).

In previous researh, the Amino Acid (AA)
sequence always served as a platform of feature extraction
(Feng et al., 2005; Chou and Cai, 2004; Wu et al., 2010;
Chou, 2001). Recently, features based on predicted
Secondary Structure Sequence (SS5S) were proposed
for the purpose of improving the prediction accuracy of
low-similarity sequences (Mizianty and Kurgan, 2009;
Kong et al., 2014) such as the length of the longest
g-helices and P-strands. Feature vectors extracted from
protein sequences are subsequently used as nputs mto
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multiple sets of machine learning techniques. The existing
structure-driven features can be generally classified into
3 varleties content-related order and distance features.
Despite the success achieved with predicted secondary
structure based methods, the development of high quality
prediction methods for low-similarity structures remains
a challenge. This study explores current features based on
the secondary structure prediction and hydropathy in the
production of classifiers that will be as accurate as the
new models via the utilization of lesser amounts of
features.

MATERIALS AND METHODS

Data sets: In this study, three low-homology datasets
(ASTRAL e ASTRAL, ;.. 640) are used to evaluate
and design the suggested method. All the three datasets
have been commonlyused as standard datasets in
previous studies (Kurgan et al., 2008, Kong ef al., 2014;
Zhang et af, 2011; L and Jia, 2010, Mizianty and
Kurgan, 2009, Yang et al., 2010; Ding et al., 2012). More
details of these datasets are shown in Table 1.

Generating features to represent the protein: To be used
efficiently in proposed method, each amino acid in the
sequence of proteinmust to be first converted into one of
the three following elements ofsecondary structure: H
(Helix), E (strand) and C (Coil). The sequence of elements
of secondary structure is also known as protein
Secondary Structure Sequence (SSS) which can be
acquired from the server of Protein Structure Prediction
PSIPRED (Jones, 1999). In order to reveal the general
contents and spatial arrangements of the predicting the
elements secondary structure of a known protein
sequence particularly for «-helix and P-strand, another
two simplified sequences are proposed based on SSS.
One sequence is a Segment Sequence (SS) which is
composed of helix segments and strand segments
(Yang et al., 2010, Zhang et al., 2011; Ding et al., 2012,
Firdaus and Harley, 2013).

First, every H, E and C segment in S35 is respectively
replaced by the individual letters H, E and C. Then, all of
the letters C are removed and 33 1s obtamed. The other
sequence 15 obtamed by removing all of the letters C
from SSS and the new sequence is denoted by E H
(Kong et al, 2014). For example, given a secondary
structure sequence S353:

Table 1: Details of the datasets

Dataset all-o all-3 o/ ot Total
ASTRAL train 640 662 748 763 2813
ASTRAL test 640 662 747 764 2813
640 138 154 177 171 640
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EECEEECCEECCCCHHHHCCHHHCCCEEEC CHHHCEE,

the corresponding SS and E H are EEEHHEHE and
EEEEEEEHHHHHHHEEEHHHEE, respectively. Based on
the above three sequences, several features are rationally
constructed. The details of these features are given as
follows:

The contents of secondary structure elements are the
most widely used structure-driven features and have been
proved sigmficantly helpful in improving prediction
accuracy of protein structural class (Mizianty and Kurgan,
2009). They are formulated as:

(1)

Where:

n; = Total number of occurrences of secondary structural
state, 1 in the amino acids sequence with each
i€f{E, H, C} and

N = Sequence length of SSS

This type of features has been extended to SS
(Yang et al., 2010). Here we further reuse them in E H.
Biosequence patterns usually reflect some important
functional or structural elements in biosequences such
as repeated patterns (Meysman ef al., 2015). In SSS, the
2-symbol repeated patterns are considered here such as
HH, EE, HE and EH. Since, the predicted states H
and E to altemate more frequently in a protein
belonging to the «/P-class than in a protein belonging
to the w«+P class where w-helix and p-strands are
isolated (Murzin et al., 1995). Therefore, one of their
newly developed features was the normalized alternating
frequency of HE and EH in E H. Hence, the contents of
repeated patterns are proposed as follows:

Poy) = ﬁ 2)
where, n_ is the number of two symbol repeated patterns,
xye{EH, HE}. Here, we extended these features to SS and
E H.

The normalized calculations of w-helices and
B-strands in SSS (12), another important structure-driven
features are given as:

caledeg
N

NealeSeg ;) = (3)

where, calcSeg,, 1s the count of H or E segments, 1€ {E, H}.
These features have been reused in E H (Kong ef al.,
2014). Here, we further extended to SS.
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The composition moment vector, CMV, expresses
both the position and the secondary structural state
composition n the predicted sequence of the secondary
structure. The first order composition moment vectors for
the secondary structural state component ¢-helix (H) and
p-strand (E) were calculated by:

|
E]=1X1]

CMV, = 4

(N-1)

where, i€{E, H} and N is the number of amino acids in the
sequence (length) for the protemn and X is the mdex of
the jth position of the i_structure.

The length of ¢-helices or B-strands can be regarded
as types of distances within similar secondary structural
segments. Thus, normalized maximal, minimal and average
lengths of secondary structural segments and variance of
w-helices (P-strands) lengths are proposed as follows:

NMax_Segl = % (5)
N

NMinSeg, = MinSeg; (6)
N

NAvgSeg, = % (7)
N

I\I\[arSeg1 = % (8)

Where 1€{E, H}, MaxSeg, and MinSeg, are the
lengths of the longest and shortest a-helices (p-strands)
and AvgSeg; and VarSeg; denote the mean and variance
of lengths of a-helices (PB-strands), respectively. Below,
we will further extract other type’s features which are the
hydopathy features.

Features set created from hydropathy and secondary
structure information: The properties of physiochemical
of amino acid have an important effect on the
establishment  of  protein  structures.
physiochemical properties of amine acids like polarity,
1soelectric points, hydropathy, flexibility, etc., have been
used to predict structural classes (Nanni et al., 2014). For
the proposed method, the hydropathy profile of the
protein sequence was selected based on the assumption
that it had a major nfluence on the folding of the protein.
The hydropathy profile defines the hydrophilic and
hydrophobic nature of the segments of a protein based on
the primary structure of the protem (Liu and Wang, 2006)

Several
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classified the twenty amino acids of proteins into three
groups based on their hydropathy profile: External (E),
Internal (I) and Ambivalent (A). The following rules by
Liu and Wang (2006) were used in this study to classify
amino acids according to their hydropathy profile:

lfs, =F,LL, MV
F(S(l)) = EF5, =D,E,G, K. N, Q, R
AFS,=5T,Y,C,W,G,P A

%)

Here, Sy, denctes the ith amino acid i the primary
sequence of the protein and F(5S;) denotes its consistent
replacement according to its hydropathic nature. For
example, an amino acid sequence for a protein:

S =MDPFLVLLHSVSS is denoted by F(S) = IEAIIIITEATAAA

Using Eq. 1-8 for each protein sequence in the dataset, ith
{T, E, A} were extracted hydropathic features and then
combined with the (SSS) features.

Feature selection: Feature selection is defined as the
approach of pinpointing and eliminating the majority of
irrelevant and redundant features. This will result in
increased efficiency of the model and faster computational
analysis. Many feature selection methods were utilized in
bioinformatics studies (Saeys et «l., 2007) and can be
divided 1nto: filter and wrapper. Due to the combmation
of the feature selection method and a classifier, feature
wrappers performed better than other filters. Thus, a
wrapper approach based on the best first search algorithm
was used to select a subset of the original features in this
work. The 10 fold cross-validation on the ASTRAL
training dataset with an SVM classifier was used in order
to prevent over-fitting. Finally, a 23-dimensional features
vector was constructed using the aforementioned features
which combines information on content, position of the
predicted secondary structural elements and hydropathy.

Classification algorithm: The Support Vector Machine
(SVM) method is one of the most common programming
techniques used in state-of-the-art systems to resolve
classification problems associated with protein structures
and 1t 15 used by many bioinformatics researchers as
well (Kedarisetti et al., 2006, Dehzangi et al, 2013).
The parameters of the regularization, C and the kernel
parameter v were adjusted based on the 10 fold
cross-validation on the ASTRAL traimng dataset.
Finally, the best values for the parameters were obtained
when C = 1024 and y = 0.25 which were selected using the
grid search approach available in the LIBSVM Software.
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Performance measures: In predictions using statistical
methods, the 10 fold Cross Validation (10-CV) test is
commonly used to ensure the statistical validity of a
classifier (Liu et al, 2012). It was also employed to
calculate the efficiency in this study. For the evaluation,
the individual sensitivity (sensitivity) with The Overall
prediction accuracy (OA) over the entire dataset was
reported. They were defined as follows (Zhang ef al.,
2011

TP TP

Sens, = ———— = (10)
(TPHFN,)  [C
TN TN,
Spec, = r— : (11)
(FB+TN) ¥, [c|

(TP*TN-FP,*FN )

MCC; =
' JFPATN)) (TR +FN)) (TN, +FP) (TP +FN,)
(12)
_ (T TR) 13)
e

where, TN;, TF,, FN,, F'P, and |C,| are the number of true
negatives, true positives, false negatives, false positives
and proteins in the structural class C,, respectively.

RESULTS AND DISCUSSION

Structural class prediction accuracy: The 10-CV test was
performed on all the benchmark datasets to evaluate and
compare the proposed classification method to 8 previous
methods. As mentioned earlier, the aim of the proposed
method 1s to improve the accuracy of predictions. In order
to show that experiments were performed using the 10-CV
test with 23 features and only 10 reused features and the
results are presented in Table 2 and 3. According to this

Table 2:The prediction quality of our method on four datasets by 10-CV test

tables it is clear that all the prediction accuracies
improved after the addition of the hydropathy features
(new features).

According to Table 2, the Sens, Spec and MCC
values in all-o class were the best for all datasets wlile
the values in g+ class were the lowest for example the
MCC was only 90.6% in the ASTRAL traming dataset.
This implied that the former was the easiest to predict and
the latter was the most difficult to identify.

Analysis and comparison with other prediction methods:
As mentioned earlier, the hydrpathy features were aimed
to improve the accuracies. In order to show their the
contribution, the experiments were performed by the
jackkmnife test on all mentioned datasets with 23 features
and only the 10 reused features and the results were given
in Table 3. According to Table 3, it was obvious that all
prediction accuracies were mmproved after adding the
novel features.

This method compared with 4 previously
published methods including the famous methods
SCPRED (Kurgan et al., 2008) and MODAS (Mizianty and
Kurgan, 2009) which are often used as a baseline for
comparison. We also compared with some competing
structural class prediction methods (Ding et al., 2012;
Zhang et al, 2014). As shown m Table 3, the highest
overall accuracies were obtamed by the proposed
method among all the tested methods m ASTRAL, ...
ASTRAL, ... and 640 datasets (82.4, 83.7, 84.5%) and
improved by 0.6, 1.01 and 0.28% compared with previous
best-performance results. As for ASTRAL, ., the a/f
class accuracy was 5.25% higher than (Zhang et al., 2014).
As for ASTRALtesting, the all-p, e/p class accuracies
were 2.2 and 2.86% higher than (Zhang et al., 2014). As
for the 640 dataset, the «+ was 13.33% higher than the

18

Table 3: Performmance comparison of different methods on four datasets
Sensitivity (%)

Sens Spec MCC Dataset Reference all-g  all-p o/ ot 0OA
Dataset Class (%) (%) (%) ASTRALpiye  Experimental 93.40 8050 84.80 7230 82.40
ASTRALy, 0, all-o 93.40 97.60 90.60 study
all-p 80.50 96.40 7917 (28) 9406 81.72 7955 73.79 81.80
o/p 84.80 90.80 75.00
ot 72.30 89.00 60.90 ASTRAL, i Experimental 94.80 8290 86.80 7208 83.70
0A 82.40 - - study
ASTRALy, g all-o 94.80 98.61 93.60 (13) 93.13 7833 8338 6427 7914
all-p 82.90 59.90 79.90 amn 9455 7749 8728 7147 8233
o/p 86.80 90.40 T6.12 (28) 9516 80.70 8394 7251 82.69
ot 72.08 90.50 63.12
0A 83.70 - - 440 Experimental 89.06 79.00 8220 87.¢6 84.50
640 all-o 89.06 96.90 87.50 study
all-p 79.00 95.11 79.30 (13) 90.60 81.80 8590 6670 80.80
o/p 82.20 95.00 85.05 (11 89.10 8510 8810 7140 83.10
ot 87.60 93.07 70.90 an 9493  76.62 89.27 7427 8344
0OA 84.50 - - (28) 9275 81.82 89.27 7427 8422
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previous best-performance results (Zhang et al., 2014).
The a/p and e+p class accuracies were satisfactory and
the same as the previous best value (84.8-87.6%).

Some results were lesser to the best among the
compared methods. This was partly because the features
we used ignored some less common secondary structural
elements such as B-turns and because the real structures
of proteinsare much more complex than the theoretical
model (Zhang et al., 2014). Although, the improvements
looked small, the mean was significant to identify the
protein structural class. For example, only around 38,221
PDB entries with 110,800 domains or proteins had known
structural class.

Labels m SCOP (as of February, 2009) while there
were >8,000,000 no redundant protein sequences in the
Protein database at the National Center for Biotechnology
Information (NCBI). Hence, 0.1% improvement in accuracy
could help m finding the accurate structural class labels
for about 8000 proteins. These prediction wmprovements
hence clearly demonstrated that our method was very
promising for recognizing protein structural class.

CONCLUSION

In this study, we proposed an accurate method that
allows us to predict protein class structures. The new
method relies on a 23-dimensional integrated feature
vector which is the result of the combination of the
mformation contammed in both the content and position in
S35 and hydropathy. The consistent results from the
10-CV  tests showed that the proposed method 1s
dependable in the case of low-similarity datasets. The
proposed sequence representation s made up of 13 new
features that are based upon hydropathy information
which resulted in satisfactory prediction accuracy when
compared to previous methods. This is attributed to the
fact that hydropathy information is capable of pinpointing
the link between the sequence and the protein structural
class. The results reported mn this research proved
that the proposed method 13 indeed a viable tool for
protein structural class prediction, especially for low
similarity sequences. In future research we would like to
optimize thesame features sets using one of meta-heuristic
techniques such as genetic algorithm in order to get more
accurate rate classification.
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