Tournal of Engineering and Applied Sciences 11 (3): 402-407, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

A New Lossless Method of Huffman Coding for Text Data Compression
and Decompression Process with FPGA Implementation

Maan Hameed, Asem Khmag, Fakhrul Zaman and Abd. Rahman Ramli
Department of Computer and Communication Systems Engineering,
University Putra Malaysia (UPM), Selangor, Malaysia

Abstract: Digital compression for reducing data size i3 important because of bandwidth restriction.
Compression technique 18 also named source coding. It defines the process of compressed data using less
number of bits than uncompressed form. Compression is the technique for decreasing the amount of
nformation used to represent data without decreasing the quality of the text. It also decreases the number of
bits needed to storage or transmission in different media. Compression 1s a method that makes keeping of data
easler for a large size of information. In this study, proposed Huffman design mcludes encoder and decoder
based on new binary tree for improving usage of memory for text compression. A saving percentage of
approximately 47.95% was achieved through the suggested way. In this research, Huffiman encoder and decoder
were created using Verilog HDL. Huffiman design was achieved by using a binary tree. ModelSim simulator tool
from Mentor Graphics was used for functional verification and simulation of the design modules. FPGA was

used for Huffman implementation.

Key words: Binary tree, data compression, decoding algorithm, Huffman Decoder, Verilog, FPGA

INTRODUCTION

Compression process is very important in the modern
era of technology which 15 focused on speed and
efficiency. Hence, large pieces of data are replaced by
small bits of information which can be distributed between
peers at faster rates (Swapna and Ramesh, 2015). The two
main kinds of algomthms are a lossless and lossy.
Lossless compression is utilized for the target that needs
an accurate rebuilding of the original text while lossy
process 1s employed when the user can allow some
variation between the original and compressed data (Kate,
2012) Data compression which utilizes lossy method
regularly cannot be reproduced accurately. Therefore,
decompression process of the compressed file can be
closer to the source data (Sharma, 2010). The fact that
information requires storage and transfer has given rise to
demands for best transmission and storage techniques.
Different lossless compressions such as Shannon Fano,
Arithmetic coding, Huffman coding and Run Length
encoding algorithm are some of the techmques in use
presently (Kodituwakku and Amarasinghe, 2010). David
Huffman has tried to improve Huffman coding techniques.
Huffman codes are prefixed codes and are optimum for a
set of possibilities (Sentlul and Robert, 2011). It 1s based
on two considerations. Firstly, symbeols that occur more

frequently have lower codewords than symbols that occur
less frequently in the best code. Secondly, the two
symbols that occur least frequently have the same length
i an optimum code. The Huffman procedure is
accomplished by adding a simple requirement to these
two pronouncements. This condition which corresponds
to the lowest probability symbols differ only in the last
bit.

Lossless compression: This type of compression
indicates that no mformation 1s lost and the exact in the
onginal file can be recovered by decrypting the encrypted
file. In thus model of compression the encrypted file 1s
usually utilized for storing or sending information
(Bhattacharjee et al., 2013). Lossless process can be
broadly classified mto two types. The first one 15 entropy
based encoding. In this method, calculation of repeated
appearance of any unique representation in the text is
done. Then, the compression reinstates the
representatives with the produced symbols. The second
type 1s dictionary based encoding. In this case, the
encoder maintains data construction which identified as
“Dictionary” (Wu et al., 2006).

Huffman coding: Huffman code 1s one of the Variable
Length Codes (VLC) which compresses data size

Corresponding Author: Maan Hameed, Department of Computer and Communication Systems Engineering,
University Putra Malaysia (UPM), Selangor, Malaysia

J. Eng. Applied Sci., 11 (3): 402-407, 2016

||||||||||||
T]

|
SPH| | E
180] | 130

Fig. 1: Queue of data

{

Z

93 17

o0

(Beak et al., 2010). Static Huffman compression assigns
variable length codes to symbols based on their rate of
events in a given text. Low-frequency representations are
encoded using a number of bits and high-frequency
symbols are encoded using some bits. The coding manner
creates a binary tree. The tree of Huffman with sections 1s
labeled bits 0 and 1. Huffman tree is necessarily sent with
compressed data to allow the receiver decode the
mnformation. The binary tree 18 constructed bottom-up and
left-to-right. Firstly, the symbols are sorted in ascending
order of their probabilities. In each step, two leaves with
the least probabilities are placed in the tree. Their parent
node has the sum of the probabilities of the two leaves.
This step should be repeated until it reaches the root
node which has probability of 1. After the tree is
completed, 1’s and 0’s are assigned to left and right
branches respectively. However, 1°s and 0"s can also be
assigned to right and left branches respectively but the
assignment must be consistent. Then, the coding for any
value-symbol is created by traversing the binary tree from
the source (root) of the tree to the particular leaves of
mterest. Tree construction mnvolves merging the jomts
(nodes) step-by-step till each of them is installed in a
rooted tree. This process always comnects the two nodes
presenting the lowering recurrence in a bottom-up method
(Suvvari and Murthy, 2013).

Steps of building Huffman tree: Huffman’s codes are run
by substituting each alphabetical representation by VLC.
ASCTI employs 8-bits per symbol in English document.
This
characters can occur more frequently than others (Asha
Latha and Rambabu, 2012). Optimal Huffman codes can be
created utilizing an effective algorithm. This 1s aclhieved

15 supposed wasteful because some special

by sorting the symbols by frequency in increasing order.
This operation will be repeated n-1 tumes until all symbols
are merged together. Each merging operation represents
a node in a binary tree and the left or right choices on
root-to-leaf path represent the bit of the binary codeword
for each symbol. Production of a table of symbols
distributed by rotation can be performed utilizing priority
queues (Aarti, 2013). Huffman compression process has

403

ol|fAl|s|ID||H]||L[[C||F]||lP M| Y| |G| [W]| Y X | |K]| [Q
771 174] [74]1173] [63][44] [35] |36][30][28][27] 127 [25] |19] |16] |16

been confirmed to be effective mn reducing the overall size
of the data and employs the procedure of substituting
fixed length bit of codes by VLC (Nourami and
Tehrampour, 2005). The procedure for comstructing
Huftman tree involves making a list of free nodes and then
selecting two nodes with the lowest weight from the list.
After that, there will be creation of a parent node for the
two selected nodes and its weight is equal to the total of
nodes. Then, the parent node is added to the list of free
nodes. This process is repeated until the construction
becomes a single tree (Kodituwakku and Amarasinghe,
2010). Huffman generates code for the entire symbol of
alphabet by traversing the binary tree from the root to the
node. It assigns O to left hand branches and 1 to right
hand branches. Building Huffman tree starts by arranging
the text data according to frequencies to extract the code
for each character. Initially, each node contains a symbol
and 1its probability (Chen et af., 2006). Huffman tree 1s
employed by both encoder and decoder. The alphabet
consists of the uppercase letters and space. Huffman tree
1s based on the following assumed frequencies: E 130 T 93
N78R77174074A73S63D44H35L35C30F28P 27
U27TM25Y19G16W16VI3IBIX5K3Q3T7271.
Every 1000 letters must have 180 spaces. Arrange the
of therr
frequencies for generating Huffman tree. There should be
a table of free leaves wherever any leaf is corresponds to

alphabet characters m ascending order

a symbol 1n the alphabet m ascending order according to
their frequencies. Figure 1 shows the queue of arranging
data m ascending order starting from the lowest
frequency to the highest one.

MATERIALS AND METHODS

Construction of the tree: A binary tree consists of a
collection of nodes and leaves. Each node connects a pair
of nodes or leaves. Node at the height of the binary tree
1s named the source (root) of the tree, it also represents
the parent for two leaves and each node should have at
least one leaf. The mutial process to build Huffman tree by
selecting two free leaves with the lowest weight from the

J. Eng. Applied Sci., 11 (3): 402-407, 2016

LI - §r] 17:'#I_: g | | o I = |
|__ é'::5| | I::=6 O3 A7 | mpanlae |E'i‘v|i!z§!£| -
IU:.:III:;IIFIICIISII.LIII;II.17I Iil
I 4"";'| |z’x{v]| c'ifl IE&Y |
|L| I]I IKI |X|
Fig. 2: Huffman binary tree
Characters LUT

Fig. 3: Show the block diagram of encoder

list to create new node and make the frequency of new
node equals to sum of frequencies of left and right
children (Pujar and Kadlaskar, 2010). In this method, a
Huffman design is implemented using binary tree to get
the smallest size of data compression which is built upon
using the frequencies corresponding to characters. Where
during this work achieved the smallest size by arranging
the branch values for tree based on its construction using
the characters and respective frequencies in the way leads
to the smallest size. In Fig. 2, shows a binary tree in which
the branch values are armranged in order to get the best
compression. The maimn idea of coding is to assigns
shorter codes to symbols that occur more frequently and
longer codes to those that occur less frequently. Both
encoding and decoding process should be done on the
same tree. Hence, the data stored i the encoder is stored
in the encoder LUT Gonzalez and Woods 2002.

TImplementation of encoder: Huffman coding process
using VL.C leads to the best compression rate of encoding
length values (Chung and Wu, 1999) In this research, the
encoder is implemented using Huffiman tree. Huffman tree
used by encoder and decoder is used to estimate
codeword bits (Brown, 2007). The encoder retrieves the
code for each symbol from a map and shifts it out one bit

404

at the time. The decoder i1s obtamed from the tree by
adding acts from the leaves back to the top of the tree. Tf
a state is not a leaf of the tree and its encoding is n, then
the encodings of its two children are 2n+l and 2n+2,
respectively. Character input which is given to the
encoder acts as input to the LUT which gives
corresponding encoded word on the data bus. This is
then given to a shift register to senally shift the data out.
As itis a variable length coding, in order to determine the
end of the codeword for each character while shufting out,
one more bit is added to the end of the code word in the
LUT which should made 1.

The codeword 15 logically shifted out till it contains
only 1 at its LSB. Thern, next character is loaded from the
comparator. Apart from this, the encoder should generate
an enable signal to the decoder so that the decoder knows
when the valid data is presented to it. Figure 3 shows the
block diagram of an encoder and codes for each character
which comes from the tree as presented before 18 stored
i LUT.

Implementation of decoder: In the decoder, the coded
value is first stored in the buffer and then shifted using a
LIFO. The shifted value 1s then stored mn the 9-bit
temporary register which is then compared with respective
codes stored m the LUT. Then, the character 15 finally

J. Eng. Applied Sci., 11 (3): 402-407, 2016

LIFO

Registers

Input

N | Comparator LUT

Output

Fig. 4: Block diagram of Huffman decoder

Fig. 5: Full Huffiman design waveform validation

25007 mOrginal size
B Compressed size
20004
¢ 15004
=3
1000
500 A
0 A

) A}
~ Y < o

Frequency

[=3
N A

(] ol o

Fig. 6: Comparison of compressed and uncompressed data sizes

decoded. Both encoding and decoding should be done
with respect to the same tree. In this method, inside the
decoder block first a buffer is first presented inside the
decoder block in order to store the output of the encoder
part. A LIFO which will shuft the coded values stored
inside the buffer is presented next to it. This shifted code
is then stored inside a temporary register of 9-bit size.
Both the coded value and Huffiman tree which are stored
mside the LUT are compared to obtamn a decoded output
with respect to the corresponding coded state. In Fig. 4,
the block diagram of Huffman decoder clearly explains the
operation as shown.

RESULTS AND DISCUSSION

HDLs and their siunulators allow designers to
partition their designs inte components that can work
concurrently and communicate with one another (Arya
and Tato, 2014). Additionally, encoder inputs involve a

405

Clk signal and 8-bit ASCIT which represent input data for
Huffman encoder to generate 9-bit output data with
variable length coding. However, decoder module
consisted of Clk signal with 9-bits as input data to
generate 8-bit ASCII which represents decoder output.
Figure 5 shows all inputs and outputs for Huffman design
and top-level Huftman simulation.

Measuring performance of huffman compression: When
estimating the quality of execution, the main difficulty will
be size competence. Considering coding mode which
depends on the repetition of components m the reference
data, 1t 1s difficult to estimate the quality of a coding
process in 1. The quality of compression depends on the
model and the arrangement of the input source.
Furthermore, compression process behavior 15 based on
the type of the compression process. Estimation of
compressed size will be done by determining the size of
the uncompressed data. This is equal to addition of the

J. Eng. Applied Sci., 11 (3): 402-407, 2016

frequencies of all the letters of alphabet. Calculation of
total size for original data 1s shown in Eq. 1. Equation 2
shows the process of calculating compressed data size
(Sharma, 2010).

Original data size = Total frequency x ASCII (1)

Original data size = 1 180 x 8 = 9440 bits

Compressed data size = Codeword bits x frequency ()
Compressed data size = 4913 bits

Saving percentage 1s derived through calculating
the shrinkage of the source file in percentages. This is
widely accepted as the measure of efficiency of a
compression method and is defined m percentage
(Mohammed et al., 2015).

Saving percentage

Saving percentage = 47.95%

3)

(original size-new size)

— - 100%
(original size)

The proposed method of Huffman design has high
saving percentage of data size up to 47.95%. Figure 6
shows the comparison of compressed
uncompressed sizes.

and

CONCLUSION

This study has shown that higher level of
information helps increasing compression quality. The
newly presented coding and decoding processes depend
on binary tree for compression and decompression of data
to reduce data size. The proposed design is used to
compress text files of size 9440 bits to achieve a new
compressed size of 4913. The proposed Huffman design
has saving percentage of about 47.95% of the original
size. Future works need to be carried out to improve the
Compared other different compression
techniques, we conclude that Huffman compression 1s a
more efficient compression for image codmng and
decoding to an appreciable degree.

area. to

REFERENCES

Aarti, A., 2013, performance analysis of huffman coding
algorithm. Int. J. Adv. Res. Comput. Sci. Software
Eng., 3: 615-619.

406

Arya, K. V. and N. Tato, 2014. A lossless compression
algorithm for video frames. Proceedings of the Sth
International Conference on Industrial and
Information Systems, December 15-17, 2014, Gwalior,
pp: 1-5.

Asha Latha, P. and B. Rambabu, 2012. A new bmary tree
approach of huffman code. Int. J. Soft Comput. Eng.,
1: 59-62,

Bedk, S., B. Van Hieu, G. Parlg, K. Lee and T. Jeong, 2010.
A new binary tree algorithm implementation with
Huffman decoder on FPGA. Proceedings of the
Digest of Technical Papers Intermational Conference
on Consumer Electronics, January 9-13, 2010,
Halmstad, pp: 978-975.

Bhattacharjee, AK., T. Bej and S. Agarwal, 2013.
Comparison study of lossless data compression
algorithms for text data. TOSR J. Comput. Eng.,
11:15-19.

Brown, S.ID., 2007. Fundamentals of Digital Logic with
Verilog Design Tata. McGraw-Hill, New York.
Chen, C.Y., Y.T. Pai and S.J. Ruan, 2006. Low power
Huffman coding for high performance data
transmission. Proceedings of the International
Conference on Hybnd Information Technology,
Volume 1, November 9-11, 2006, Cheju Tsland, pp:

71-77.

Chung, K.I.. and T.G. Wu, 1999. Level-compressed
huffman decoding. IEEE Trans. Commun., 47:
1455-1457.

Gonzalez, R.C. and RE. Woods, 2002. Digital Image
Processing. Prentice Hall, New Jersey.

Kate, D.M., 2012. Hardware implementation of the
huffman encoder for data compression using altera
DEZ2 board. Int. J. Adv. Eng. Sci., 2: 11-15.

Kodituwakku, SR. and U.S. Amarasinghe, 2010.
Comparison of lossless data compression algorithms
for text data. Indian J. Comput. Sci. Eng., 1. 416-425.

Mohammed, MH., A Khmag, F.Z Rokhani and
AR Ramli, 2015, VLSI implementation of huffman
design using FPGA with a comprehensive analysis of
power restrictions. Int. J. Adv. Res. Comput. Sci.
Software Eng., 5: 49-54.

Nourani, M. and M.H. Tehrampour, 2005. RL-Huffman
encoding for test compression and power reduction
in scan applications. ACM Trans. Design
Automation Electr. Syst., 10: 91-115.

Pwar, JH. and L. M. Kadlaskar, 2010. A new lossless
method of image compression and decompression
using huffman coding techniques. J. Theoretical
Applied Inform. Technol., 15: 18-22.

Senthil, 5. and L. Robert, 2011. Text compression
algorithms-a comparative study. T Commun.
Technol., 2: 444-451.

J. Eng. Applied Sci., 11 (3): 402-407, 2016

Sharma, M., 2010. Compression using Huffman coding.

Int. T. Comput. Sci. Network Secur., 10: 133-141.

Suvvary, V. and M. Muwthy, 2013, VLSI
inplementation of huffman decoder using binary
tree algorithm. Int. T. Electr. Commun. Eng. Technol.,
4: 85-92.

407

Swapna, R. and P. Ramesh, 2015. Design and
implementation of huffman decoder for text data
compression. Int. J. Curr. Eng. Technol., 5: 2032-2035.

Wu, K., EJ. Otoo and A. Shosham, 2006. Optimizing
bitmap indices with efficient compression. ACM
Trans. Database Syst., 31: 1-38.

	402-407_Page_1
	402-407_Page_2
	402-407_Page_3
	402-407_Page_4
	402-407_Page_5
	402-407_Page_6

