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Shape-based Automated Classification of Subdural and Extradural Hematomas

" *Hau-Lee Tong, "Mohammad Faizal Ahmad Fauzi, 'Su-Cheng Haw,
'Hu Ng, '"Timothy Tzen-Vun Yap, 'Chiung Ching Ho
'Faculty of Computing and Informatics, *Faculty of Engineering,
Multimedia University, 63100 Cyberjaya, Malaysia

Abstract: This study reports the classification of subdural and extradural hematomas in brain CT mmages. The
major difference between subdural and extradural hematomas lies in their shapes, therefore eight shape
descriptors are proposed to describe the characteristics of the two types of hematoma. The images will first
undergo the pre-processing step which consists of two-level contrast enhancement separated by parenchyma
extraction processes. Next, k-means clustering 1s performed to garner all Regions of Interest (ROIs) into one
cluster. Prior to classification, shape features are extracted from each ROI. Finally for classification, fuzzy
k-Nearest Neighbor (fuzzy k-NN) and Linear Discriminant Analysis (LDA) are employed to classify the regions
into subdural hematoma, extradural hematoma or normal regions. Experimental results suggest that fuzzy k-NN
produces the optimum accuracy. It manages to achieve over 93% correct classification rate on a set of 109
subdural and 247 extradural hematoma regions, as well as 629 normal regions.
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INTRODUCTION

In general, subdural hematomas are very similar to
extradural hematomas. They are a type of bleeding that
occurs within the skull but outside of the bram tissues. A
tear in the ven or artery are the cause for most of
subdural and extradural hematoma cases. Subdural
hematoma is caused by the bleeding below the dura.
Extradural hematoma, on the other hand, is generally
located n the temporal area and 1s caused by the tear of
the middle memngeal artery. In other words, subdural
hematoma occurs closer to the brain while extradural
hematoma occurs closer to the surface of the skn.
Medical 1maging teclmiques such as Computed
Tomography (CT), Magnetic Resonance ITmaging (MRI)
and Ultrasound (UUS) which let the doctors to look into
the human body to diagnose the medical condition are
usually carried out to identify the hematomas.

Various methodologies for detecting or segmenting
brain abnormalities or regions of interest have been
developed using computer-aided techmques (Shi ef al,
2011; Cheng et al., 2010a;, Chalana and Kim, 1997,
Cheng et al., 2010b; Joo et al., 2004; Chou et al., 2001,
Tan et al., 2012, Cheng et al., 2007; Kesavamurthy and
SubhaRam, 2006, Cosic and Loncaric, 1997,
Matesm et al., 2001; L1 et ai., 2009, Hara et ai., 2007,
Chan, 2007; Liu et al., 2008; Tech and Korrapati, 2011;
Tong et al, 2011). Hematoma detection is one of

the emerging topics m bram abnormality detection.
Kesavamurthy and SubhaRam (2006) proposed a
semi-automatic hematoma and infarct detection system by
using seeded region growing algorithm. Different from a
hematoma, an infraction 15 a type of ischemic stroke
caused by the blockage in the blood vessels supplymng
the blood to the brain. In their research, the seeds are
initially fixed on the potential area of the hematoma and
the region 1s iteratively grown to obtam the desired
regions. For a fully automated detection of the
abnormalities, a rule-based classification (Cosic and
Loncaric, 1997, Matesin ef al., 2001) grounded on the
intensity, area and adjacent neighbor have been proposed
to ammotate the regions likes calcification, hemorrhage and
stroke lesion. Similarly, Ti et al. (2009) presented a
knowledge-based classification on the mean intensity of
hematomas.

Besides the adoption of prior knowledge for the
classification, midline approach is adopted by Hara et al.
(2007) for the detection of extradural and subdural
hematomas. In their approach, midline is located based on
the boundary of the skull. Another method proposed by
Chan (2007) uses the left-right asymmetry to extract the
intracranial hematomas. Other than these, Liu et al. (2008)
adopted a Support Vector Machine (SVM) learmng model
for the hematoma slices detection. In their research, SVM
with a linear kernel is used to classify the normal slices
and hematoma slices. Besides, Ramana proposed a
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perceptron based on feed forward neural netresearch
(Tech and Korrapati, 2011) for the classification of the
different types of hematomas. In their approach, the input
parameters (location and shape) are fed into a neural
netresearch for its classification.

In this study, we extend our previous researchs on
detection of abnormal regions (Lee et af, 2008),
hemorrhagic slice (Lee et al, 2011) and intracranial
hemorrhages (Lee et al,, 2011) by adopting new shape
features and several classifiers to further distinguish
and classify the hematomas into subdural or extradural.
On CT scans, both types of hematoma exhibit similar
characteristics: they have relatively lugh intensity values
and found n similar location. Their shape characteristics
however, 18 rather different, hence reliable shape features
may be able to distinguish them. In this research, two
datasets generated by different CT scanners from two
collaborating hospitals are used to test the efficiency and
feasibility of the proposed method.

MATERIALS AND METHODS

Overview of the proposed method: Our proposed system,
as shown in Fig. 1, consists of four main stages
which are preprocessing, clustering, feature extraction and
classification. The purpose of the preprocessing stage
15 to enhance the visibility of the images and prepare
the unages better for the subsequent clustering and
classification stages. Clustering 15 then applied to
aggregate all potential hematoma regions mte a single
cluster based on their intensity. The clustering helps the
classification process by filtering out the irrelevant
regions that have relatively low mntensity compared to the
hematomas. Next, several shape features are extracted
from each Region of Interest (ROI). Eventually, all
the extracted features channeled into the
classifier to annotate the subdural and extradural

are
hematomas.

Pre-processing: The pre-processing stage consists of
two contrast enhancement processes.
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Fig. 1: Flowchart of the proposed system
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Original image contrast enhancement: Without any
contrast enhancement, the original images (an example
15 presented m Fig. 2a have very low wvisibility
for the regions of interest (intracramal). Thus, an
automatic-contrast enhancement method is proposed to
improve the ROI’s visibility. The images are subjected to
the following steps:ZConstruct the histogram of the
image. The histogram normally consists of two major
peaks in which only the rightmost peak is contributed by
the ROTs as depicted in Fig. 3a.

Smooth the listogram curve by convolving 1t with a
vector which elements are having the value of 107 in
order to obtain the distinct peaks. This is to aid the
process of locating the upper and lower bounds.
Transform the smoothened curve mto absolute first
derivative as shown in Fig. 3b.

Locate the upper bound T;; and lower bound T, from
the left and right peaks of the absolute first derivative as
shown in Fig. 3b. I, and I; are the himits over which image
intensity values will be extended linearly:

@

Fig. 2: The origmmal and contrast refined image: &) original
image and b) contrast refined 1mage
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Fig. 3: Histogram of original image and its absolute first
derivative: a) constructed histogram and b)
absolute first derivative for (a)

Fop = Lux ey )
’ (Iy-11)

where, I, I, ; and F, ;, denote the maximum intensity in
the image, the orignal pixel intensity and the contrast
enhanced pixel intensity, respectively. The contrast
enhanced image for the example in Fig. 2a 1s shown
m Fig. 2b. For all the images m our dataset, only two major
peaks were encountered. Nevertheless, in case there are
more than two major peaks, the algorithm will consider the
two highest peaks on left and night.

Parenchyma extraction: After the contrast enhancement,
thresholding is carried out to convert the image into
binary. From experimental observations, all pixels values
within the skull are found to be over 1700, hence, the
threshold value 1s set at 1700. From the binary umage,
connected components analysis is performed to identify
the largest blob which always appears to be the skull.
Connected components analysis researchs by grouping
the pixels mto different components based on pixel
connectivity with each component having a unique
label. In our research, 8-connectivity 1s once the skull is
identified, a commonly used flood-fill operation is done to
fill up holes 1n the skull. Flood-fill operation searches for
unmarked foreground pixel (value = 1) and then fills all the
remaining neighboring pixels n its region. The skull 1s
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and the
Parenchyma and b) Enhanced image

Fig. 4: Parenchyma enhanced 1mage: a)

then segmented out from the parenchyma by setting the
intensity of the skull to zero to generate the parenchyma
mask. The parenchyma obtamned as shown in Fig. 4a.

Potential hematoma contrast enhancement: Generally, the
intensity of the hematomas will fall after the peak position
for the whole image. As such, the contrast of the
hematomas can be enhanced by focusing on the higher
side of the intensity. From the constructed histogram, the
lower himit 15 automatically determined from the peak
position of the histogram. The upper limit is then derived
from the arithmetic operation:

(2)

I, =L +1,

where I, is a step up intensity for obtaining the upper limit
and 18 predefined at 500, obtained from experimental
observation. The I, and I are eventually channeled into
Eq. 1 again for contrast stretching. The image after the
contrast enhancement reduction is shown in Fig. 4b.

Potential hematoma candidate clustering: After the
pre-processing, clustering is applied to partition the
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Fig. 5:Results of clustering by a) Otsu thresholding; b)
FCM; ¢) K-means and d) EM

image into two segments. Basically, one of the segments
consists of non-ROIs which have relative low mtensity
compared to the hematoma. The other segment, on the
other hand, contains higher intensity regions which could
be the hematomas themselves or some other regions with
similar intensities to the hematomas. The segment which
does not contamn any potential hematoma regions will be
omitted.

We have experimented with four clustering
techmques which are Otsu thresholding, k-means
clustering, Fuzzy C-Means clusterng (FCM) and

Expectation-Maximization Method (EM) in order to select
the appropriate algorithm for the potential hematoma
acquisition. Each of the four techniques was optimized
before the comparison 1s made, m which they were
iterated until it reaches the optimal results. Otsu
thresholding  exhaustively different
thresholds that minimize the mtra-class variance. For
k-means clustering, FCM clustering and EM method, the
number of clusters is set to two and the iteration process
is terminated when the error or misfit measure goes below
the preset tolerance, 107", An example of the comparisen
results for these clustering techniques 1s shown in Fig. 5.

From Fig. 5, it can be observed that Otsu
thresholding, FCM clustering and EM clustering tend to
merge more surrounding pixels with the hematoma to form
a larger cluster. This over-segmentation problem causes
the extradural and subdural regions to lose their unique
shape characteristics. The results produced by k-means
clustering, based on experiment on numerous iumages,
produce less noise and preserves the actual shape of the

searches  for
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hematomas most of the time. Based on this, k-means
clustering is recommended to be used for the feature
extraction and classification stages.

Feature extraction: Firstly, potential regions with similar
intengity are transformed into binary images. From the
binary images, several shape features are extracted from
each connected component. Altogether, eight shape
features are considered which are the region area, line of
contact with the border, linearity, ellipticity, circularity,
triangularity, Concavity and the Sum of Centroid Contour
Distance Curve Fourter Descriptor (CCDCFD). The details
of each feature are discussed as.

Region area: Region area measures the size of the region
which 1s based on the number of pixels within the region.
The region area 1s sigmificant to isolate noisy pixels which
tend to have similar intensity with the hematomas but with
relatively much smaller sizes.

Line of contact: The use of line of contact 1s based on a
prion knowledge that unlike the hematomas, some other
abnormal regions such as falx, tentorium, etc., have less
contact with the skull. We consider one of the adjacent
neighbors of the subdural or extradural hematomas to be
the skull. To obtain the line of contact, the potential
regions are dilated by one unit. The line of contact is then
defined as the mtersection between the dilated area and
skull.

Linearity: This descriptor measures the linearity
(Stojmenovic et al., 2006) i the interval [0, 1] and 1s
based on the ellipse-to-axis ratio. From the centroid of the
ROIs, the first and second moments are obtained. The
major and minor axes for the ROI can then be located and
the linearity 1s defined as:

IInNer axis

L(ROI} = 1- (3)

major axis

Triangularity: This feature 15 derived based on moment
invariants. Generally, extradural hematomas do not
possess a perfect triangle shape. However, 1t has
relatively high value of triangularity compared to other
regions. The affine moment mvariant used to characterise
the triangle is given by:

_ Py, (RODp, , (ROD-(, (RO
(K, o (ROD)Y'

I 4

1 (ROL) = HROI xiyjdxdy (5)
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From the affine moment invariant, the triangularity
(Rosm ef al., 2003) of an ROI 1s defined as:

1081 . Fl< 1
1 108
1081 otherwise

Z(ROI) = (6)

Triangularity values range from [0, 1] and peaking at
1 whenT = 1/108 where the ROT is a perfect triangle.

Ellipticity: The proper bi-convex extradural is in fact an
ellipse with closed curve which is symmetric about its
horizental and vertical axes. To measure the ellipticity
(Rosin et al, 2003) of a shape, similar approach to
triangularity is used and is defined as:

1671, 1
1=
HROD={ 1 6w’ ()
16m%] otherwise
Circularity: To complement the ellipticity and

tnangularity in distinguishing extradural cases, circularity
measure as proposed by Zunic et al. (2010) is defined by:

(1, o (ROD)Y
2m(1, (RO + 1, , (ROD)

A(RON) = (8)

Concavity: This umique shape descriptor to measure the
concavity of the hematomas, especially for subdural
cases. It measures the degree of concaveness based on
the subdural contour and the overlappmg area.
Several steps are required to measure the concavity as
(using Fig. 6a as an example):

Locate the non-contact contour with the skull and
enclose it with a bounding box (Fig. 6b)

Locate two appropriate points (x,, y,) and (%, v,)
from the non-contact contour that intersected with
the bounding box. These two pomnts are located
based on nearest Buclidean distance from two
different corners of the bounding box

Based on (x,, ¥,) and (x,, ¥,), split the contours into
mner (without contact with the skull (Fig. 6b) and
outer contour (with contact with the skull (Fig. 6¢)
Acquire the closed contours for the inner and outer
contour (Fig. 6d, e) by interpolation

Apply the flood-fill operation to fill up both closed
contours (Fig. 6f, g)

Overlap the filled inner contour with the filled outer
contour. The resulting overlapping region is as
shown n Fig. 6h
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Fig. 6: Steps taken in measuring concavity: a) subdural
region; b) inner contour; ¢) outer contour; d) inner
closed contour; e) outer closed contour; f) filled up
mnner contour; g) Filled up outer contour and h)
overlapping area

The concavity is defined as the ratio between the
overlapping regions with the filled outer contour area.
Note that the values are normalized to the range [0, 1].

Sum of Centroid Contour Distance Curve Fourler
Descriptor (CCDCFD) --CCDCFD is another feature
proposed to describe the subdural and to distinguish it
from the extradural hematomas. The CCDCFD sum reflects
the symmetry of the hematoma shapes. The more
symmetric the shape, the lower the CCDCFD sum is. In
computing the sum, we only consider the first 32 Fourier
coefficients, due to the fact that most of the contour
information s concentrated at the low frequency region.
Dividing the coefficients with the second coefficient will
normalize the range of the CCDCFD sum to [0, 1].

Classification: For the classification, two methods are
considered which are Linear Discrimmant Analyses (LDA)
and fuzzy k-Nearest Neighbor (fuzzy k-NN). LDA projects
data into a lower dimensional space. The optimal
projection 1s accomplished by mimmizing intra-class
distance while maximizing the between-class distance.
This generates optimal class separability.
On the other hand, Fuzzy k-NN
identification of the k-nearest neighbors in the feature
space. The relationship between the training and testing
data 13 determined by the fuzzy membership function.
Integration of the fuzzy membership function with k-NN
reduces the bias of the classification for certain classes.

is based on the

RESULTS AND DISCUSSION

The CT brain images were collected from 23 patients
diagnosed with hematomas from owr two collaborating
partners, Hospital Serdang and Hospital Putrajaya. The
gold standard of diagnosis was achieved based on the



J. Eng. Applied Sci., 11 (3): 395-401, 2016

radiologists” reports. Overall, there are 356 hematoma
regions, out of which 109 are subdural and 247 are
extradural cases. Besides, 629 normal regions but with
similar ntensities as hematomas were also extracted from
the 1mages to evaluate the algorithm’s ability to reduce
false positives.

The classification results were evaluated using
ten-fold cross validation. The classification accuracy, the
false positive rate and false negative rates for all the 985
regions generated from LDA classifier and fuzzy k-NN
classifier are summarized in Table 1. As can be observed
from the table, the chosen features generate satisfactory
classification results with 79.39% accuracy for LDA and
93.60% accuracy for fuzzy k-NN. It was also observed that
fuzzy k-NN outperforms LDA for all values of k from 2-20,
with the optimum accuracy recorded when k = 8. The
better performances of fuzzy k-NN could be contributed
to the fact that the data are non-linearly separable.
Besides, fuzzy k-NN gives the optimum rates for both
false negative and false positive. The reporting of false
negative and false positive rates is significant to reflect
the amount of normal regions misclassified as hematomas
and vice-versa and fuzzy k-NN is better at distinguishing
these.

Besides the overall classification, accuracy for each
class 1s also investigated. It can be seen from Table 1 that
for both classifiers, classification accuracy for extradural
cases 1s higher than subdural. This may be due to the fact
that subdural hematomas are more wregular in shape and
15 thus more difficult to distinguish from the normal
regions. It can also be observed that the LDA produced
much lower accuracy compared to fuzzy k-NN classifier in
classifying normal regions (76.63 vs. 95.23%). It can be
concluded that the proposed shape features researchs
very well with fuzzy k-NN classifier.

CONCLUSION

We have proposed a new shape features for the
classification of bram hematomas mto subdural and
extradural categories, as well distinguishing them from
normal regions. This 1s an extension to our previous
researchs which focused on detecting abnormal regions
and classifying the regions or slices into normal or
hemorrhagic slice. Based on the experiments on two
different datasets from two collaborating hospitals, the
proposed system produced promising results with 93.60%
overall accuracy recorded using fuzzy k-NN classifier
and 79.39% overall accuracy using linear discriminant
analysis. Fuzzy k-NN also outperforms LDA on each of
the subdural, extradural and normal categories. Future
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researches will be directed towards the classification of
more abnormalities i the brain such as infarct, atrophy
and others.

REFERENCES

Chalana, V. and Y. Kim, 1997. A methodology for
evaluation of boundary detection algorithms on
medical images. TEEE Trans. Med. Imaging,
16: 642-652.

Chan, T., 2007. Computer aided detection of small acute
intracranial hemorrhage on computer tomography of
bramn. Comput. Med. Imag. Graphics, 31: 285-298.

Cheng., I.Z., CM. Chen, Y H. Chou, C.8. Chen, C.M. Tiu
and K.W. Chen, 2007. Cell-based two-region
competition algorithm with a map framework for
boundary delineation of a series of 2D ultrasound
images. Ultrasound Med. Biol., 33: 1640-1650.

Cheng, I.Z., YH. Chou, C.S. Huang, Y.C. Chang and
CM. Tiu et al., 2010a. ACCOMP: Augmented cell
competition algorithm for breast lesion demarcation
in sonography. Med. Phys., 37: 6240-6252.

Cheng, J.7Z., YH. Chou C.5. Huang, Y.C. Chang,
CM. Tiu, KW. Chen and CM. Chen, 2010b.
Computer-aided us diagnosis of breast lesions by
using cell-based contour grouping. Radiology,
255: 746-754.

Chou, Y.H., CM. Tw, G.S. Hung, 5.C. Wu, T.Y. Chang
and HK. Chiang, 2001. Stepwise logistic regression
analysis of tumor contour features for breast
ultrasound  diagnosis. Ultrasound Med. Biol,,
27: 1493-1498.

Cosic, D. and S. Loncaric, 1997. Rule-based Labeling of
CT Head Image. In: Artificial Intelligence in
Medicine, Keravnou, E., C. Garbay, R. Baud and T.
Wryatt (Eds.). Springer, Berlin, Heidelberg, ISBN: 978-
3-540-62709-8, pp: 453-456.

Hara, T., N. Matoba, X. Zhou, 3. Yokoi and
H. Aizawa et al, 2007. Automated detection of
extradural and subdural hematoma for contrast-
enhanced CT images in emergency medical care.
Proc. SPIE, Vol. 6514.10.1117/12.710307

Joo, 8., Y.3. Yang, W.K. Moon and H.C. Kim, 2004.
Computer-aided diagnosis of solid breast nodules:
Use of an artificial neural network based on multiple
sonographic features. TEEE Trans. Med. Tmaging,
23: 1292-1300.

Kesavamurthy, T. and S. SubhaRani, 2006. Pattern
classification using imaging techniques for infarct
and hemorrhage 1dentification in the human brain.
Calicut Med. ., Vol. 4.



J. Eng. Applied Sci., 11 (3): 395-401, 2016

Lee, TH., MFA. Fauzi and R. Komiya, 2008.

Segmentation of CT bram images using K-means and

EM clustering. Proceedings of the Fifth International

Conference on Computer Graphics, Imaging and

Visualisation, August 26-28, 2008, Penang, Malaysia,

Pp: 339-344.

Lee, TH., M.F.A. Fauzi and S.C. Haw, 2011. Intracramal
hemorrhage annotation for CT brain images. Int. T.
Adv. Sci. Eng. Inform. Technol., 1: 689-693.

Li, Y., Q. Hu, I. Wuand 7. Chen, 2009. A hybrid approach
to detection of brain hemorrhage candidates from
clinical head CT scans. Proceedings of the 6th
International Conference on Fuzzy Systems and

>

Knowledge Discovery, Volume 1, August 14-16,
2009, Tianymn, pp: 361-365.

R, CL. Tan, TY. Leong, CK. Lee and
B.C. Pang ef al., 2008. Hemorthage slices detection
m brain CT mmages. Proceedings of the 19th
International Conference on Pattern Recognition,
December 8-11, 2008, Tampa, Florida, USA., pp: 1-4.
Matesin, M., S. Loncaric and D. Petravic, 2001. A

rule-based approach to stroke lesion analysis
from CT brain images. Proceedings of the 2nd
International Symposium on Image and Signal
Processing and Analysis, JTune 19-21, 2001, Pula,
Croatia, pp: 219-223.

Liu

]

401

Rosin, P.I., 2003 Measuring shape: Ellipticity,
rectangularity and triangularity. Mach. Vision
Applic., 14: 172-184.

Shi, F., D. Shen, P.T. Yap, Y. Fan and I.Z. Cheng ef af .,
2011. CENTS: Cortical enhanced neonatal tissue
segmentation. Hum. Brain Mapping, 32: 382-396.

Stojmenovic, M., A. Nayak and I. Zunic, 2006. Measuring
linearity of a finite set of points. Proceedings of the
TEEE Conference on Cybernetics and Intelligent
Systems, June 7-9, 2006, Bangkok, pp: 1-6.

Tan, T., B. Platel, H. Husman, C.I. Sanchez, R. Mus and
N. Karssemeijer, 2012. Computer-aided lesion
diagnosis in automated 3-D breast ultrasound using
coronal spiculation. IEEE Trans. Med. Imeaging,
31: 1034-1042.

Tech, K.R. M. and R.B. Korrapati, 2011. Neural network
based classification and diagnosis of brain
hemorrhages. Int. I. Artif. Intell. Exp. Syst., 1: 7-25.

Tong, H.I.., M.F.A. Fauzi and S.C. Haw, 2011. Automated
Hemorrhage Slices Detection for CT Brain Images. In:
Visual Informatics: Sustaining Research and
Inmovations, Zaman, HB., P. Robinson, M. Petrou,
P. Oliwvier, TK. Shih, 3. Velastin and I. Nystrom
(Eds.). Springer, Berlin, Heidelberg, ISBN: 978-3-642-
25190-0, pp: 268-279.

Zunic, J., K. Hirota and P.L.. Rosin, 2010. A Hu moment
invariant as a shape circularity measure. Pattern
Recognition, 43: 47-57.



	395-401_Page_1
	395-401_Page_2
	395-401_Page_3
	395-401_Page_4
	395-401_Page_5
	395-401_Page_6
	395-401_Page_7

