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Reliability Estimation of Machine Parts with Complicated
Geometry on a Base of Methods of Nonparametric Statistics
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Abstract: The study considers the durability estimation task of details with complicated geometrical shape
working in random regime at operation. The analytical dependences for stress-strain condition calculation of
machines part and units do not exist, therefore estimation of the stresses and displacements of such objects
is possible to carry out only by computer simulation with the help of numerical methods: Finish Element
Method (FEM). External loads to details (pressure and temperature) are random values and generally aren’t
described by known laws of distribution. Researchers have developed the original algorithm for estunation of
probability of no-failure operation of details based on use of the apparatus of nonparametric statistics.
Adjustment of nonparametric generators of random numbers is realized by methods of nonparametric statistics
in accordance with real samples of pressure and temperature. As a result of realization of multiple-factor,
computer experiment for calculation the stress-strain condition of detail under random loading the functions
approximating the stress variation m dangerous pomts depending on the loads level are determined. On the
basis of these functions, the estimation of probability of no-failure operation in all dangerous points of a detail
is carried out. The algorithm developed by researchers is shown on the example of durability estimation
(probability of no-failure operation) of the body of wedge valve KZ13010-100.
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INTRODUCTION

The study considers the task of durability estimation
of details with complicated geometry. Analytic
dependences for stresses determination in dangerous
places of such details are absent. Approximate methods
do not guarantee the required precision of calculations.

Base stages of the durability estimation task: Details are
subjected to the mfluence external both force and
temperature loads in exploitation conditions. Loads are
random variables, their functions of density of
distribution can not be described with required error of
the first kind in accordance with tests for concordance by
methods of parametric statistics. The researchers propose
new approach, including following base stages (Fig. 1):

*  Determining of functions of density of distribution
for random external loads by methods of
nonparametric  statistics (Botev et al, 2010,
Syzrantsev and Chernaya, 2014; Syzrantsev et al.,
2015; Syzrantseva, 2009b, c¢). Adjustment of
nonparametric generators of random numbers on
basis of these functions

Planning of the multiple-factor experiment for
realization the calculation of stress-strain condition
of details

Carrying out of computer experiment realizing the
calculation of finite number of variants of details
stress-strain conditions by numerical method of the
elasticity theory (for example, by finish element
Method (Oden, 2010, Syzrantsev et al, 2003,
Syzrantseva, 2009a; Wittbrodt et al., 2012)
Determining of the functions, approximating the
stress variation in dangerous places on surface of
researched detail depending on wvalues of external
loads

Obtaining the representative samples of stresses in
dangerous places of detail with the help of
generators of random numbers (Syzrantsev and
Chermaya, 2014; Syzrantseva, 200%, b) and
approximating fumctions

Establishing the functions of density of distribution
of stresses in detail dangerous points by methods of
nonparametric statistics (Syzrantsev and Chernaya,
2014; Syzrantsev et al., 2015; Syzrantseva, 2009b, ¢)
1in accordance with these representative samples
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Fig. 1: Algorithm of task decision

¢ Calculating of probability of no-failure operation

of the
functions of demsity of distribution of real
stresses and the functions of density of distribution
of limit stresses

¢+ Choice of detail place with minimal probability of
no-failure operation, characterizing total durability of
researched detail

for each dangerous place on basis

MATERIALS AND METHODS

method: We shall consider
proposed approach by the example of decision of
durability estination task (probability of no-failure
operation) for body of wedge wvalve KZ13010-100
(Fig. 2), loaded in real operational conditions by
random

Realization of the

values of pressure and

presented correspondingly by samples

temperature,
Pi: i:m and

t],jzl,n| .

Establishment of the functions of density of
distribution of pressure and temperature: On the
first stage, wsing point values measured values of
pressure
shall establish by method of minimization of
empirical risk (Syzrantseva, 2009b, ¢) the functions of

fe (P) and

p.i=Ln, and temperature t,j=Ln, , Wwe

density of distribution of pressure
temperature fy, (t):
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f(P) = izpl;\'pi “P, [(P A, )/(BP 4, ):|

(1
. T
@, (0) = cos {(21 71) 5 ot}
Nt
fo (0 =3 Ao [ (t-A)/(B, - A)]
= (2)
. i
9, (a):co{(ZJ—l)Ea}
Where:
¢ = Element of [0, 1]
Ay = Coetticients
I = 1N,
io= LN
A= mlin{pi}
B, = max{p}
AJ = mjin{t]}
BJ = mjj.ax{t]}
N,; = No. of expansion terms
Then, we shall realize the adjustment of

nonparametric generators of random values p, and t,

1=1.N on basis of Eq. 1 and 2 where N generated sample
length.

Computer experiment planning: Development of
computer aids has allowed to increase fundamentally, the
validity and accuracy of calculations of the stress-strain
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Fig. 2: Loading diagram for pipeline valves in operational conditions; P = Operation environment pressure (MPa),
Gap = Weight of valve (N); G, = Weight of acuator (N); F, 4y, Fyoe = Forces in bolted connections of flange (N);
Q... = Force in wedge sealing (in “close” position) (N); T . = Temperature of environment, centigrade degrees;
Top.., = Temperature of operation environment centigrade degrees; Topy,, = Temperature centigrade degrees;

Fi,. = Forces arising on account of flange misalignment (N); M,;,. = Bending moment of pipe line (N*mm)
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Fig. 3: Equivalent von Mises stresses distribution in details of wedge valve KZ13010-100 in accordance with applied

temperature and external loads

condition of details with complicated geometry. There are
developed a few software, the most commonly used 1s
ANSYS (Syzrantseva, 2009a-c), realizing fmish element
method (Oden, 2010; Oshibkov et al., 2015; Syzrantseva,
2009a, c). As an example, Fig. 3 and 4 illustrate the results
of stresses (0) and temperature (t) estimation in pipeline
stop valve (Syzrantsev ef al., 2013) which appear at
concrete pressure p; = const and external temperature
t, = const. However, ANSYS is too massive and can not
be used as a subroutine in general program. Despite of
performance of modern powerful computers, calculations
by ANSYS are very laborious and prolonged. In other
words, using ANSYS, we are able to execute some tens of
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calculations but no some hundreds or some thousands as
1t 18 necessary for generating of representative sample of
stresses &,.n=1N Therefore, for calculation of probability
of no-failure operation of wedge valve body, we shall use
the technique, based on processing of computer
experiment results which lead to obtaining the regression
dependences 6™, 0™ (p, 1), m=1M for M dangerous
pomts of a body. Realization of this technique provides
carrying out two-factor experiment: first factor 1s pressure,
second factor is temperature.

Interval of factors varying is defined by limit values
of pressure and temperature taken from samples p;,i=1n,
and tij=ln,. Pun =WO{P}, Py =mAX{P),  t =min{t},



J. Eng. Applied Sci., 11 (2): 204-209, 2016

Fig. 4 Temperature distribution in details of wedge valve KZ13010-100 in accordance with applied temperature and

external loads

b = mjax{tj} . As dependences o™ = ¢"™ (p, t), m=1M , in

general case are smooth and continuous, for

approximation, we shall use polynomial function of

a kind:

o™ =al? +af i+ alf x 3)
Where:
A = B 4B + b s p?
a™ = bt b xp + by xp?
a” = b+ bl xp o+ b xp?
Expanding Eq. 3, we shall obtain the expression:
() _ ) ) (@t L Blmig? 4 g
o =by + byp+ bt + b pt + bt + )

b pt+ b tp” + byt 'p + byt p’

Stress-strain condition calculations: For determination of
values of unknown coefficients b{™,i=02;j=02 of Eq. 4,
we shall realize the computer experiment which consist
carrying of body
stress-strain  condition by finish element method
(Syzrantseva, 2009a-c¢, Wittbrodt et af., 2012) at fixed

n out several calculations

values pressure p const and temperature t
const, 1=1,L . At task decision, it is expediently to use the
experiment planning methods. Follow these methods, we

shall switch from dimensional values p, and t, to
nondimensional Pi(-1=P = +1) and (-1t < +1)
P = w (5

pmax - pmm
And:
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m (values)
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Fig. 5: Response function 4
E = 2t1 - (tmax+ tmm) /tmax - tmm

Caleulation of Eq. 4 coefficients b®.i=02j=02 i3
connected with necessity of using the results of 9
experiments as minimum. [t demends carrying out
bifactorial experiment at varying of parameters p, and t, on
three levels. We shall define these levels by next values:
Pi=-10;+1and 1 -1,0;+1 . Consequently, we shall obtain the
matrix of expeniment planmng, presented i Table 1. After
body stress-strain condition calculations by finish
element method at pressure and temperature values,
corresponding to levels of varying, we shall establish
9 values of real stresses o™.,1=19 for each dangerous
point “m”. Right column of Table 1 illustrates these stress
values for one of body dengerous point “m”™ as an
example (Fig. 5).
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Table 1: Matrix of experiment planning RESULTS AND DISCUSSION

Exp. No. m P o™ ™ (MPa)

1 -1 -1 gy 45 . . o

2 -1 0 o 60 Determining of the functions, approximating the

i 'é +} OBE:; g? stress changing in dangerous points: Substituting
- O .

5 0 0 oj(m) 70 these values to left part of Eg. 4 and corresponding

g +? +} Oﬁzm; 23 to this experiment values P and t from Table 1 to right
- for i . -

8 +1 0 ogtmn 75 part of Eq. 4 for each experiment, we shall obtain the

2 1 1 o™ 68 linear equation system:

G b~ B b{E 4 b b b b0 b b bl
O b+ b b+ b2 < B b b2+ P b b b b
O b 0 =b < b b 0 B b+ b b b b b e O
O = b2 B 65 0 =B b+ b B ) B bl b+
O <2+ B2 ;8 =B 0 b+ B 0 4 b+ b

After solving of this system, we shall obtain following expressions for coefficients b{".i=0.2; j=0.2:

b, i=0,2,j=0,2:
by = o™i = (00— o)/ 2b = (of — o) b = (6™ - oW - o + 6y 1 4,
by’ = (o™ + of" )2 —af™; by’ =0} - oi™)/2 - (of+ o - o - o) / 4, 7
by = (G4 6™y /2 o™biY = (o - o) /2 - (G- ot ot - o) [ 4

bl = (5™ oM ol 5y 4 - (6 + i ol gl £ 2+ ot

For values o{™,1=19 of Table 1 m accordance with Eq. 7 the values b are obtained:

b =70, b =6 b = 7.5, b’ = 1L bgY =25
bﬁn) =-1.25; bE;“) =-1.25; bg‘;‘) =-0.75; ng;) -125

In that way, for body point “m” Eq. 4 at nondimensional parameters (P-t) looks like:

G =70+ 6D+ 7.5t -11p — 2.5t — ®

— -—2 -1— -1=1
1.25Pt-1.25tP —0.75t P+1.25t P

And for determination of function o*? = o™ (p, t), it is necessary to transform expression Eq. & using
dependences (Eq. 5). Response function (Eq. 4) atvarying of pressure and temperature n intervals p,, = 1.8,
MPa<p<pu. = 5.0 MPa; t,, =-28°C<t<t, . = 40°C is shown on Fig. 5.

Describing the functions of density of distribution of limit stresses: Now, we shall return to task presented by Fig. 1.
Obtained Eq. 8 taking into account dependences Eq. 5 allows to generate for each point “m” the sample of stresses
o, n=1,N by nonparametric generators of pressure (p,.n=1N ) and temperature (t,n=1N) and then to describe by
methods (Botev et al, 2010; Syzrantsev and Cheranya, 2014, Syzrantsev et al., 2015) the functions of density of
distribution of stresses:

(6™ -A,)

AT &)
(Ba B Aa)

M,
ch(G(m) ) = E}\‘ok X (pk
k=1
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Fig. 6 Functions of density of distribution of stresses in

points “m” researched body of wedge valve
Where:
A, = min{g”}
Ba = mr:\ax{o(“mj}
@, (¢) = cos [(2xk-1)xm/2xa]

As an example Fig. 6 illustrates the functions of
density of distribution of stresses and its approximation
mn kind (Eq. 9) for one of pomts “m” researched body of
wedge valve. Coefficients of approximation function are
determined with the help of method of minimization of
empirical risk (Syzrantseva, 2009a, b). Then by
nonparametric generator 3, of liniting stresses (as
endurance limit o,), we shall obtain the sample with
required length and describe the functions of density of

(o, -A)

distribution of limit stresses:
fi (o= ler AP, {(BA)}

A, =min{o_, }, B, =max{o_.}

(10)

Calculating the probability of no-failure operation: After
that, we shall calculate for each point “m” of researched
body the probability of no-failure operation:

(B

0
Mo
c

RO — J‘

|

o, +C—-A

s
4, ﬂd}d

a

Sk,

=1

=)

(1)

P

k=1

0
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Total durability of body R is defined that point “m”,
which 1s characterized by mimmal calculated in
accordance with Eq. 10 value R™:

R = min(R™)
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