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INTRODUCTION

Variational iequalites were mtroduced by
Stampacchia (1964). In recent years, variational inequality
theory has been extended and generalized in several
directions. One of the most important problem n this
theory 1s the development of an efficient iterative scheme
for solving variational inequalities. Also we have the
problem of finding the fixed pomnts of nonexpansive
mappings which 13 the subject of current interest in
functional analysis. Therefore it 13 natural to consider a
unified approach to these two different problems. Let C
be a closed convex subset of a real Hilbert space H and P,
be the metric projection of H onto C. A mapping A of C
mnto H 1s called monotone 1ft

<Au-Av,u-v>20, forallu ve C

A mapping A of C mto H 15 called «o-
mverse-strongly-monotone  (Browder and Petryshyn,
1967, Tiduka and Takahashi, 2005; T.iu and Nashed, 1998)
if there exists a positive real number ¢ such that:

<AU-Av, u-v> > OLHAu - AV , vuve C

Tt is obvious that any o-inverse-strongly-monotone
mapping A is monotone and Lipschitz continuous. The
variational inequality problem is to find u € C such that
(Lions and Stampacchia, 1967; Browder, 1965; Bruck,
1977; Takahashi, 197%):

<Auv-u> 20, forallue C

The set of solutions of variational inequality problem
is denoted by VI (C, A). A mapping T of C into itself is
called nonexpansive (Goebel and Kirk, 1990, Takahashi,
2000y if:

HTu - TVH < ||u -V

, Yuvel

We denote by F(T) the set of fixed points of T. For
finding an element of F(S)NVI(C, A), Takahashi and
Toyada (2003) gave the followmng result.

Theorem 1.1: Let C be a closed convex subset of a real
Hilbert space H (Takahashi and Toyoda, 2003). Let A be
an g-inverse-strongly-monoctone mapping of C into H and
let S be a nonexpansive mapping of C into itself such that
F(8)n VI{C,A) = @. Let {x,} be a sequence generated by:

X, =xe C
x,+1 =a, x, + (1-0n)SP.(x, - & AX_) (1)

foreveryn=0,1, 2, ... where {A,} < [a, b] for some a, be
(0, 2¢t) and {c, b < [c.d] for some ¢, d (0, 1). Then, the
sequence {x,} converges weakly to some pomt zeF(S)N
VI(C, A), where:

z=lm,__Preic 5%

After that for finding a common element of F(S)n
VI(C, A), Nadezhkina and Takahashi (2006) gave another
result. They obtamed the following weak convergence
theorem.

Theorem 1.2: Let C be a closed convex subset of a real
Hilbert space H (Nadezhkina and Takahashi, 2006). Let A
be a monotone and k-Lipschitz continuous mapping of C
into H and let S be a nonexpansive mapping of C into
itself such that F(S)NVI(C, A) = . Let {x,}, {y.} be
sequences generated by:
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x, =x€C

0

yn = PC(XI'A _)\‘nAXn)
X, t1=ox, +(1-0)SP(x, -AAy,), Y n =0 (2

Where {4, }=[a, b] for some a, be(0, 1/k) and {c tc
[c. d] for some ¢, de(0, 1). Then the sequences {x.}, {v,}
generated by (1.2) converge weakly to some z F(S) n
VI(C, A). Also, Noor (2000, 2007) suggested the following
three step iterative scheme. For given x,eC, the
approximate solution x,, . | 1s given by:

y. = P.(x, - AAX)
z, = Py, - M. Ay,)
x,t1=P(z -AAz ).V n =0, Ae (0, % )

MATERIALS AND METHODS

Preliminaries: Let H be a real Hilbert space with mner
product <., > and norm |.|. Let C be a closed convex
subset of H We shall write xn—x to show that the
sequence ix,} converges weakly to x. x,—~x implies that
{x,} converges strongly to x. We know that for any xcH,
there exists a unique nearest point u in C, such that:

||u - PCXH= inf {||u - y||: ve C} (1

P 1s called the metric projection of H onto C. The
metric projection P.of H onto C satisfies:

*, for every x,ye H

<x-y,Px-P.y=> :HPCX -P.y
(2)
P. 13 characterized by the property:
P.xeC

Also, P. satisfies the following properties:

<x-P.x,y-Px> =0, forallxe H,ye C 3
ey =lx-Bx |+ |y - P, forall xe Hoye ¢ )

Let A be a monotone mapping of C into H. Tn the
context of the variational inequality problem, it is easy to
see that:

ue Q <u="PF, (u-AAu), forany A >0 (5)

Where € is the set of solutions of variational
inequality problem. It 1s known that H satisfies (1967) the
Opial condition (Takahashi, 2000) that is, for any
sequence {x,} with xn-x, the inequality:

lim infe [xn - x||<liminf € |xn - y| (6)
n—peo n—yes

holds for every yeH with y # x. We also know that, if {x}
1s sequence of H with x, —x and ||x,| x|, then this gives
that x, - x. A set valued mapping T : H - 2" is called
monotone if forallx, yeH, f Txandg Tyim ply <x-y,
f-g = 0. A monotone mapping T: H-2"is maximal if its
graph G(T) is not properly contained in the graph of any
other monotone mapping. Tt is known that a monotone
mapping T is maximal if and only if for (x, f)eH=H, < x-y,
f-g >> 0 for every (y, g)eG(T) implies feTx.

Let A: C -~ H be a monotone, k-Lipschitz continuous
mapping and N.v be the normal cone to C at veC, that is:

Nv={we H: <v-u,w>=0,uec C}
Define:

Av+Nyv, if veCl
Tv = ]
O, ifve C

Then, T 1s maximal monotone (Rockafellar, 1970,
1976) and 0cTv if and only if veVI(C, A). If A 15 an
a-inverse-strongly-monotone mapping of C into H, then
it is clear that A is 1/¢-Lipschitz continuous. We also
know that for all x, yeC and A=>0:

-2 -1-2a)y| =

Jix - yy& AiAx - Ay =

HXE y”2 -2hEXE Y, (7
Axe Ay >+ 1 |axe Ayl =

e y||" + 20 - 200) [Axe Ayl

So, if Az, then I-A A is a nonexpansive mapping of
C into H. Takahashi and Toyada, gave the following result
for the existence of solutions of the variational inequality
problem for g-mverse-strongly-monotone mappings.

Proposition: Let C be a bounded closed convex subset of
areal Hilbert space H and let A be an ¢-inverse-strongly-
monotone mapping of Cinto H (Takahashi and Toyoda,
2003). Then, VI (C, A) is non-empty. Now we give some
lemmas which will be useful to prove our main result. The
first lemma was given by Schu (1991).
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Lemma 2.1: Let H be areal Hilbert space and let {e.} be
a sequence of real numbers such that 0 a<g, < b<1 for all

n=0,1,2... andlet {v,} and {w,} be sequences of H such
that (Schiy, 1991):

lim supe|lv,| =c, lim supe |w_|=c¢
n—pe= n—je=

And:
lim,(n =)o, v, +{1-a w, [=c,
forsomec >0

Then:

lim, (n > os) v - wn|= 0

Next lemma was given by Takahashi and Toyada
(2003).

Lemma 2.2: Let H be a real Hilbert space and let D be a
non empty closed convex subset of H (Takahashi and
Toyada, 2003). Let {x,} be a sequence in H. Suppose that,
for all ueD:

SR

for every n = 0, 1, 2, ... Then, the sequence {P.x}
converges strongly to some zeD.

Lemma 2.3: Tet H be a real Hilbert space, C be a
nonempty closed convex subset of H and T: C-C be a
nonexpansive mapping (Goebel and Kirk, 1990). Then, the
mapping I-T is demiclosed on C, where T is the identity
mapping; that 1s, x,~x in C and (I-T) x,~v imply that xeC
and (I-T)x =v.

RESULTS AND DISCUSSION

Weak convergence theorem: Now, we give a new
iterative scheme for nonexpansive and inverse strongly
monotone mappings and prove a weak convergence
theorem for this scheme.

Theorem: Let C be a closed convex subset of a real
Hilbert space H. Let A be an a-inverse-strongly-
monotone mappmng of C mto H and let S be a
nonexpansive mapping of C mto itself such that F(3) n
VI(C, A)#¢. Let {x}, {v.}, {z.! be the sequences
generated by:

X, =X €C, 7, = Pyfx, -T,Ax,),
Yn - PC (Zn - M“n‘“’azn )5‘
Ky = 0%, +(1-0,)8P{y, -A,Ay, ), n=0

where, {o,}, {A}, {pd, it} satisfy the following
conditions:

» .}t isasequence in(0, 1)
o {A, fp,t and {1} are three sequences in [a, b] for
some a, b e (0, 2a)

Then, the sequences {x.}, {y.}. {z} will converge
weakly to the same point z £ F(S) n VI(C, A), where:

z= rl]l_I)l: PF(S) AVIC, A)
Proof: Forall x, v € C and A, € (0, 2a), we have:

-2 Ap - (-2 8] = [x-yie h,(Ax - Ay
= |xe sz -2k, <xEY,
Axe Ay>+), 2| Axe Ay['=

eyl +2, O -20)Axe Ay|

(1)

The T-A,A is a nonexpansive mapping of C into H. Let

ueF(SNVI(C, A), then we have u= P {u-AAu), for all A>0.
Note that:

zyeu| € |Pix, -T,Ax, )€ PClu- T, Au)|

<

X, € u|

And:

Vo -u| € | Pulz, -pAz) - Po(u ,Au)
<z, -u

<X, -Uu.
Also, let w,= P.(y,- A,Ay,). Then:

w-u] = |Puty, - A Ay, ) - Pl - A
<y, -y

< ||Xn - uH .
Now:

a,(x, -u) +{1-a, )Sw, -u)H

[+(1- 0w, -u

‘-s—(l— OLn)HXn -u‘

=0, X, -u

<o, ||Xn -u

%, - U

S0, [Xu - U] =[x, - u|. Therefore, there exists ¢ = lim,,

X, - u and the sequences fx.}, fy.}, {z}, {w} are
bounded. Now:
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x o, (x,-u) +(1- otn)(S\;fvn—u)H2

n+l1

<a, %~y + (o ly, - uf +2, (4, 20 Ay, -Au||

“H(1-0, ), (O, 200 Ay, -Aul

X, - u||2 + (1-a,)

=,

X, -1

<|lx,u + (1ot b(b-200) Ay, Aul

= (1-0, bib-20)| Ay, -Au|’

2 2
|

S ”Xn -u n41”

-|X

Since:

, 80 limHAyn —AuH =0 (2)

limen—u” = lim
—see fL—pee

n—see

X,.,-U
On the other hand, we have:

_uHZ = G‘n(xn_u) +(1- Ctn)(SWn -11)H2

[

nt1

=0, ||xn -u||2 + (1-a )||w, —qu

|2

<o, Hxn— qu +(1- OLn)Hyn -u

P4 (l-a_X|z, —u”2 + pn(pn-ZOL)HAzn-Au”Z)

=0, ||Xn- u

2z

<o, Hxn - u||2 + (1-0t, )||xn —qu + (1-0t, ), (p, —20t)||Azn -Au||
"+ (1o, Jb(b-201) | Az, -Au|’
= -(1- &, )b(b - 2a)|Az, - Ay

= ||Xn -u

2 z
=[x, -l -

X, -0
Since:

lim”xn —u|| = limen+1 -u||, so lim ||Azn -AuH =0 (3)
n—pee n—pee n—ye

In a similar way, we can obtain that:
Lim||Ax, - Aul| =0 (4
e

© = [Pty -2, Ay,) - Potu - 2, Aw)
< <y, -A Ay, -(u-AAu), w -u>

1
_2{

W, -1

Y, - A Ayn-(u- lnAu)H2 + Hwn- u||2 -y, - A Ay, - (- AW - (w_-w)}

1
e I LA B AR A B VAR

1
SE{Hyn_HHZ Jr”‘Nn_u”2 _Hyn_wn H2 + 2)\‘n<yn - W, Ay, - Aus _an ”Ayn_Aunz}

Therefore, we obtain:

Hwn -l SHyn -l - V.- W, ’ +2h, <y, - W, , Ay, - Au> - Ayn—AuH2
On the other hand, we have:
Koo - = o, (- 1) + (1, WS W, - w)
<o, [x,-uf + 1 -o)|w,-uf
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L +2), <y, -w, . Ay,-Au> -2, Ay, - Au|

yﬂ _Wﬂ

Ly A, <y, -w, , Ay, - Au> - knz ||Ayn- Aqu

<o, x, -]’ +(1-a )iy, -uf -

<a, Hxn _uHZ +(1- C“"n)”Xn _uHZ - ”yn _wn|

= ‘- L 420, <y,-W, , Ay,- AU -]

Ay, —AuH2

X‘n_u Yn_wn

By Eq. 2 and since Lim |x, = Lim x| , so:

=0

lim |y, -w,
n—pes

In the same way, we obtain:

"= Pz, -u,AZ) - Pou - p A
< <z, - W AZ - (- u Ay, -u

yﬂ_u

2

2y “"nAZn_ (u - “"nAu) - (Yn_ u)”2 }

Zy- MnAZn_ (u - MnAu)”z + Yoo u

_1
,2{
2-|

(Za-¥a) - M, (Az,- Au)'}

< dlz-uf +

Yoo U

2 2

+ 20, <7, -y, Az, - Aus - 2| Az, - Aul' )

1
< Uz oy uf v,
from which it follows that:
vy, -u ‘2 <z -uff -z -y, [f +2u, <z -y, Az - Au= -’ |Az, - Au”2
Now:
Xoa —u”2 = ot (x, - w) + (1 -0, ) Sw,_ - u)||2
<d, |x,-u “iq -0 )||w, - ’
Sotn”xn—u : +(1-a,) yn-u|2

<a, ||xn - u||2 +{1- OLn){HZn— u||2 - ||zn— Va H2 + 20, <2, -V, AZ, - Au> - an ||Azn—zﬁqu2

2

L op,<z,-y,, Az,- Aus - Az, - Ao

Zﬂ- YI]

2, -, +20,%2,-y,, Az, Auz - 17| Az, - Al

+(1-o,)x, -u||2 -

S0

X,-u

=[x -uff -

By Eq. 3 and since Lim|x,-u| = Lim|x,.;-u| , so:

2=0

lim ||z, -y,
n—pes

On the other hand, we have:

z, —u”2 = HPC(XH-’CHAXH) - Pc(u—’anu)H2
= <X,-T,Ax,-(u-TAu),z -u>
1
= > {‘

=4

2

%, - T, AX, - (0 -T,Au) - (z,- w3

X,-T,Ax, - (u- ’anu)”z + ||zn— u

2 2

f+2t,<x,- 7, Ax,- Aur -1, [|Ax, Au}

+

X, -1 Z,-1 X,-Z,

which implies that:
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2 2
o < el -

Hence, we have:

i) = or, (¢, - w) + (1 - 00, WSw, - w)ff

|2

|2

<o ||xn—uH2 +(1-0Ln)| wo-u

<a, ||xn—uH2 + (l—otn)Hyn- u

<o ||xn —qu -5-(1-0511)”2n - u||2

<a, ||xn—uH2 + (I—C(.n){”Xn -u|

<a, ||xn—uH2 +(1-a, ){[x,u

B

- .

By Eq. 4 and since Lim |x,-u| = Lim[x,,u] , so:

];LIEHXH -Z, ‘ =0 (7)

Also, by Eq. 6 and 7, we have:
X, V=X, —Z, |2, -y, > 0asn o (8)

Now by Eq. 5 and 7, we have:
X, - W, | = X, - V.l T ||¥, - w,||— Oasn —ee. (9)

As {x,} is bounded, so we have a subsequence {x}

of {x,} that converges weakly to some z. We shall show
that:
ze F(S)NVI(C, A)

Firstly, we shall show that zeVI(C, A). Since, x, - y,~0,
X,-2,~0, X,- w,~0, so we have z,~z, y;~ 7z, x;~z Let:

Av+N: if vec
Tv = ]
] ifvec

Then, T is maximal monotone and OcTv if and only if
veVI(C, A). Let (v, w)eG(T). Since, w -AveNwv andw,g C,
so we have:

<V -Wn, W-AvV =20
On the other hand, from:

wa = P.(v -2 AY,)
We have:

W - Wi ,Wa - (Vo= AaAYa )2 20

Xn-ZnHZ + 2T, <X, -7, , A%, - Au>-rn2HAxn—Au||2

’ %, an2 +2T, <X, 7, AX_-Aw> T 7| Ax - Aqu}
%,z 2T, < x, 2, Ax,-Aus T A, - Auf

x,- 7|+ 21,<%, 7, , Ax,-Aw> -1} |Ax, - A}

And hence:

V- Wi, (W, -y, VA, H Ay, =20

Therefore:

<v-w,, W=

Z<v-w,  Av>

Z<V-w, AV -<v-w, (W, -y, VA, A

= VW, AV-AYa - (W, -y, VI, >

=<V W, AV - AW v w AW, Ay, T -
VWL (W -y, VA

2V W, AW, - AX >-<v-w L (w, -y, VA,

Hence, we obtain:

<yv-z,w>20, azi — oo
Since, T is maximal monotone, we have z=T'0 and
hence ze VI(C, A). Now, we shall show that zeF(S). Let
ueF(S) n VI(C, A). Since:

[8v.- v =

va-uf =[x, -l
So, we have:

lim, wsupHSyn-uH <¢

s

Where:

c=lm, . Hxn- uH

Further, we have:
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lim, _,..|Jot, (x,-w) + (1 - &, )(Sy, - u)
=lim, . X, uH
=c

By lemma 2.1 ,we have:

=0

n

lim_ ||Syn -X

We also have:

< ||an— SynH + HSyn- X

<|%,- va

HSXB- X,

n

+ [8y,-x

n
Hence, we have:

lim, Han- XnH =0

Since, x,~z and lim |Sx -,x| 5 0, so by
demiclosedness of I-8, we have zeF(S). Let {x,} be
another subsequence of {x}, such that {x;}- z’. Then,
2 €F(S) N VI(C.A). Let us show that z = z’. Assume that z#
z’. From the Opial condition, we have:

lim Hxn- z|| = l:mw ianxn‘ -7

<lim inf|x, - 7
f—pee t

=lim,

X, - ZH =1imianxn_ - ZH
n—ye= t
<liminf
n—ye

X, - ZH= lim . (x,- ZH

This 18 a contradiction. Thus we have z = z’. This
umnplies:
x, — ze F(8) NVI(C, A)

Now, put:
u, =PF(S) N VIC, A,
We show that:
z=lim _, u,
From:

u, =PF(SHNVI(C, A)x, and ze F(3) T VI(C, A)
We have:
<z-u,,u,-x, =20

By lemma 2.2, {u,} converges strongly to some z¢€
F(S) n VI(C, A). Then, we have:

<Z-Z,,2,-2>20

And hence z = z,.

Applications: Using theorem 3.1, we shall prove two
theorems as by liduka and Takahashi (2005), Moudafi
(2000), Xu (2004) and Chen et ol. (2007). A mapping T:
C> (Cis called strictly pseudocontractive if there exists «
with O<c <] such that:
T -1y < x -y

+ O‘LH(I -Tix-(I - T)y”2

For every x, yeC. if & = 0, then T 1s nonexpansive. Put
A =TT, where T: C>C is a strictly pseudocontractive
mapping with ¢. Then, A 15 (1-o)/2-mverse-strongly-
monotone. Actually, by defimition of T, we have that for
all x, yeC:

|- An-1- A <|x-y[ +ajax-ay[
On the other hand, we have:
- Axc- @-Anf = |x-3 +|ax-Ay] -2<x-y, Ax-Ay>

Hence, we have:
<x-y, Ax-Ay> > (1 - ay2|Ax - Ay[

Using theorem 3.1, we first present a weak
convergence theorem for a pair of a nonexpansive
mapping and a strictly pseudocontractive mapping.

Theorem 4.1: Let C be a closed convex subset of a real
Hilbert space H, let S be a nonexpansive mapping of C
nto itself and let T be a strictly pseudocontractive
mapping of C into itself such that F(3) N F(T) # ®. Let
{x,} be a sequence generated by:

X, =xeC

7, = (1-1) %, +TTx,

¥y = (1-u)z +u Tz

X~ ox, H(1-a )81 -2y, +A Ty, ,n=0

where  {a.}, {A3, {pd, {ti, satisfy the following
conditions:

o {a,}isasequencein(0, 1)
o {A%, fpt and {1} are three sequences i [a, b] for
some a, b e (0, 2a)
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Then, the sequences {x,}, {v.}, {z} will converge
weakly to the same point z € F(S) n VI(C, A), where:
NVIC, A)x,

z =lim P,
n—yee Fz)

Proof: Put A =1-T. Then, A is inverse strongly monotone.
We have that:

F(T) = VI{C,A)
And:

Py, A AY) = (1A )y, +A Ty,

Thus, the desired result can be obtained from
theorem 3.1. Using theorem 3.1, we also have the
following result.

Theorem 4.2: Let H be areal Hilbert space. Let A be an
e-inverse-strongly-monotone mapping of H into itself and
let S be a nonexpansive mapping of H into itself such that
F (S) n A0 # ®@. Let {x,} be a sequence generated by
X, = x€H and let:

Zﬂ - Xn - THAXI]
Yo© ZMAZ,
Xy = O X, H(1 - 0008y, -2 Ay, ). n=0

where, {c,}, {A), {pt, {t.} satisfy the following
conditions:

* {a,}1sasequencemn (0,1)
o A}, {u} and {t,} are three sequences in [a, b] for
some a, be (0, 2 a)

Then, the sequences {x,}, {v.}, {z.} converge weakly
to the same point zeF(S) N A™'0, where:

z= limn_mPF(S)M_l o%a
Proof: We have A0 = VI(H, A)and P, =1 By
theorem 3.1, we obtain the desired result.

Remark. Notice that F(S)n A™'0 c VI(F(S), A). Yamada
(2001) for the case when A is strongly monotone and
Lipschitz continuous mapping of H into itself.

CONCLUSION

In this study, motivated and inspired by above
mentioned results, we introduce a new iterative scheme
for finding a common element of the set of fixed pomts of

a nonexpansive mapping and the set of solutions of
variational inequality problem for inverse strongly
monotone mapping in a real Hilbert space. We shall obtain
a weak convergence theorem for the three sequences
generated by this scheme. Using this result, we shall
obtain a weak convergence theorem for a pair of a
nonexpansive mapping and a strictly pseudocontractive
mapping. Further, we consider the problem of finding a
common element of the set of fixed pomnts of a
nonexpansive mapping and the set of zeros of an nverse
strongly monotone mapping.
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