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Solutions for the Perturbed Sine-Gordon Equation
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Abstract: This document is based on the search of solutions for the perturbed Sine-Gordon equation using

Hamiltoman systems and Fourier transform. Also, with inverse mtegrant factor we guarantee the non existence

of periodic orbits in some regions of the plane for the dynamical system and we generalize such system.
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INTRODUCTION

Almanza-Vasquez ef al. (2015) was showed a solution
of the cubic non linear dissipative Klein-Gordon equation,
the perturbed Sine-Gordon equation is a generalization of
the before equation for small solutions. Kolpak and
Ivanov (2016) was treated the Sme-Gordon equation but
we work with the perturbed Sin-Gordon equation. In
(Marin et al., 2013a, b) was encountered a generalization
of a gradient system. Cao was made a generalization of a
Birkhoffian system. Chen and Mei was made gradient
representations for generalized Birkhoff systems. Chen
was studied a combined gradient system. Chen
were proposed. Li

generalized gradient systems

generalized gradient representations were studied.
Adeniyi, Aliyu and Kayode was  showed
methods for solving second order differential

equations. Marin-Ramirez et al. (201 4) was constructed an
asymptotic for resonance of a wave function associated
with the Klein-Gordon equation in presence of a potential
barrier, this equation is a linear equation our equation is
a nonlinear equation. Ortiz et al. (2012) was proposed a
simple method for constructing asymptotics of
eigenvalues for the Klein-Gordon equation in the
presence of a shallow potential well. Marin et al
(2013a, b) was studied the Klein-Gordon equation,
reducing the initial problem to an integral equation and
then by applying the method of Neumann series to solve
it. Marin et al. (201 3a, b) was encountered an asymptotics
of eigenfunctions for discrete Klein-Gordon equation.
Salas and Castillo (2012) gave exact solutions to perturbed
Sine-Gordon  equation. We
solution and construct a system without periodic

show there exists a

orbits.

MATERIALS AND METHODS

The perturbed Sine-Gordon equation: There are three
mathematical not linear models to shape the dynamics of
the DNA: that of Sine-Gordon, that of Yakushevich and
that of Peyrand and Bishop. The model of Sine-Gordon,
proposed in 1980 by Englander and collaborators: it
appears i such a way that it 1s obtained as description of
the dynamics of the DNA but experimental later results
put it in question. TLike that, this one is not too useful to
understand the dynamics of the DNA though it had
merit for being the first one and motivating the
introduction of other two. From the equation disturbed
Sine-Gordon we want to seek for solutions and to look if
these can contribute a better model of the non linear
dynamics of the DNA. Using different methods one
tries to show solutions of the differential perturbed
Sine-Gordon equation:

oy, + Pu,, +yu, +3sin(w) =0 1)

where, a#0, p#0, & # 0 and v is a real constant. The first
one consists of realizing a change of variable to transform
(Eq. 1) into a differential ordinary equation that can be
solved by classic methods. In the second one, 1t 1s applied
transformed of Fourier and a series of steps follows then
to apply transformed mverse of Fourier, obtaiung a
solution. Then, there 1s constructed a dynamic system
associated with (Eq. 1) which does not possess periodic

orbits and to check this fact simply connected
regions of the plane are constructed bearing in mind the
Bendixson-Dulac criterion. Also, a solution 13 going to
calculate route Hamiltonian systems.
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Preliminary notes
Theorem 3.1: Bendixson-Dulac Criterion (Osvaldo ef al.,
2015). Letf, (x,, x,), f, (x,, x,) and b, (x,, x,) be functions C'
in a simply comected domain DcR® such that
d(fh)/dx +3(f;h)ox, does not change sign in D and
vamishes at most on a set of measure zero. Then the
system:

{Xi =%, %) (2)

X, =£, (%, x,).(%. %) D

does not have periodic orbits in D. We consider the
following equation to obtain Dulac functions:

fla—h+fza—h:h Cix,, X,) — on 9% 3)
ax,  Cox, ax,  ax,

For a dynamic system as (Eq. 2) (Osvaldo et al., 2015).

Definition 3.2: We can take the following
quasi-differential equation:
fla—v+fza—vzv o ot 4
ox oy ox oy

Where V is an inverse integrating factor of the system 9
(Laura et al., 2011).

Definition 3.3: Let p.q.k, leZ". A real function f: R*=R is
called a p-g-quasi-homogeneous function of weighted
degree k if T (a™x,, "%, = &'f (%, x,),..., all @eR/{0}. A
vector field F = f0/0x+{,0/3%, is called a p-g-quasi
homogeneous vector field of weighted degree 1, if f; and
f; are p-g-quasi-homogeneous fimctions of weight degree
ptl-1 and g+l-1, respectively. A p-g-quasi-homogeneous
differential system of weighted degree 1 is determined

by a p-g-quasi-homogeneous vector field (Laura ef al.,
2011).

Theorem 3.4: Given a p-g-quasi-homogeneous vector
field F = £,3/9x +£,3/9x, then V = qx,f,-px,f, 1s an mverse
integrating factor of the system (Laura et al., 2011).

Theorem 3.5: If a non-zero p-g-quasi-homogeneous
polynomial of weighted k 13 an inverse mtegrating
factor of the system (Eq. 9), then it has no limit cycles
(Laura et al., 2011).

Traveling wave equation: We make the change of variable:

u=u(x,t)=2tan T v{p(x + At +E N
E,€RoCandlet E=p(x+At+E)

Then:
20V N+
. 2w V(e — 2ua ) uig)
v [HDZ(&)T
2WEA+ () -
_ e - (22U )y v
S AL Vi ¢S [HUZ(@T
sin(u) = sin(2tan (&) = liljf()é)
Hence:

W + B(v(®) + D)+
(202) (00 + BIVET + P V(E) + 57 (E) +5
u(E) + YA (E) =0

Dynamical system: Now, we let v®© then v

wAan? + B){uiE)) +y" +
[(-202 (002 + By? = @)y + 80°(E)+ 8
(L)) + yapy =0

If x = v (£) we obtain:

uZ(oA? + B)(x2 + 1)y' =
[ (2707 + Bry” + iy + 87 + 8 | )
X — ALY
We consider the following system to (Eq. 5):
X -y
(20 ) (0 + By’ +
, yuxy + 8x° + 8
wi o + B)(x2 + 1)

]X — YAy (6)

We take 0 = [ (@A), then:

X =Y

B (729)/2) Ay X — Ay 7
, +5%°+8

B(x*+1)

Solutions through Hamiltonian system: We consider
(Eq. 6) and do:
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{X =H, } (8)
y'=-,
Integrating with respect to y the first equation of the

system and with respect to x the second equation, we

have that:

H:y—2 C
5 + C(x) ©

H= fyzln(xz +1)+ Y;LTMxy+ %XZ +P(y)

where, C(x) and P(y) are constant that depend of x and y,
respectively, then:

1 AL )
H=|—-In(x>+1 |v* + By + —x°
5y e

The solution curves are given by H (x, y) = K where
K is a constant.

Non existence of periodic orbits
Theorem 7.1: The system (Eq. 6) has no periodic orbits in
a region of the plane.

Proof: To ensure the non existence of periodic orbits we
will make use of the Poincare-Bendixson theorem. Taking
X =X, % =y, § (%, %) and:

(%, %) =f(x,y)
—[(—263/2) + YAy + 8x% + 8}( — ALy
- 6 + 1)

We suppose dh/dx, = 0 and dh/dx, = h, substituting in
Eq. 3 we obtain; h (y) = ¢’ and:

—-20y? + yuAxy + 8x* + 8]x — vAuy
x*+1)
[-48y + YpAx]x + Ui
x> +1)

=CEx,y)+

In COIsequence:

(26x)y% + [4ex —(x%+ 1)«@.]

y7[8x3 +ux? + 8x + yku} (10)

O(x>+1)

Cx,y)=

Considering the numerator as a function of v in Eq. 9
then we have a quadratic function with discriminant given

by:

D =[ 40x - (x> + 1)yxu]2 1 4(26x)
[8}(3 + yhux? + 8% + yku}
That 1s to say:

D =(808 -y )2kt +
(1667 + 8887 + 808 + 2y*A u™)x* +v7)u’

Hence, C (%, )0 in the regions:
(x,y)e R®: x>0,y <H

Ri=1 40x+ Z +ppu—+D
40x

(x,y)e R* x> 0,y<H
Ry =1 aox+ (x> + Dyau+4D
40x

Always that, 0>0, y>0, A>0, =0 and 8=0.
RESULTS AND DISCUSSION

Method of the fourier transform: In the low-amplitude
case u~0 then sin (u)=u. Now Eq. 1 takes the form:

oy + fu, + +8u=0 (1)
Theorem 8.1: The solution for (Eq. 11) is (Eq. 14):

Proof: Applymg the Fourier transform from x to p we
have:

ol + yil, + (8 —p’Pi =0 (12)

which can be seen as an ordinary differential equationin #pt
whose solution 1s given by:

Tt T 403 - pB)

200
ulp,ty=ke (13)

e —4a(8 - p*p)

200

+kZe

Where k, and k, are constants. Using the theorem of
inverse fourier transform in Eq. 12, we obtain:
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1y 4B p’B)
200
u(x,t)= LJm ke &P dp
T e —aes-p)
2o
| tkye,
(14)
Method of inverse integrating factor: Taking *=U and
x =i, we have:
Sl "
y=ay+bx

where, & = y/aand b = 8-p*p/a. Taking p = g, we have
f, (e, ofy) = afy = off] (x, y) then f| is p-g-quasi-
homogeneous of weighted degree p and £, (¢, ¢’y) = o
(ay+bx) = &1, (x, y) then f, 15 p-q-quasi-homogeneous of
weighted degree p.

Theorem 9.1: V = p (-bx’+y*-axy) is a non-zero p-p-quasi-
homogeneous polynomial of weighted 2p and 13 an
inverse integrating factor of the system (Eq. 15), then it
has no limit cycles (Laura ef al., 2011).

Proof: Now using the mverse mtegrating factor V = p
(-bx*ty*-axy) a p-g-quasi-homogenecus function of
weight degree 2p and satisfies the quasi-differential
Eq. 4. Then this system does not have periodic orbits in
R

Generalization of the system: The Hamiltonnian system:

s
y=H;

has this solution H = -y*/2+ayx+bx’/2 = K for some
constant K. For the next result we are going to use the
Poincare-Bendixson theorem and the following
quasi-differential (Eq. 3):

Theorem 10.1: The dynamical system (Eq. 15) can be
generalized to (Eq. 17) and both do not have periodic
orbits for; y+a<0 and xeR.

Proof: Taking *=Y and supposing that dh/dy = 0,
C (%, y) = aty<0. Using Eq. 3, we have yoh/dy = h
[C (x, y-a)] and Sh/dy = h So, h = ¢" If3f,/Fy = then
f;, = ay C, (x). From Eq. 3, we get the ordmary
differential equation f, = at+y-(0f,/Fx+w). Then, its solution
is £, = C, (v). We obtain the generalized dynamical
systerm:

{X =Cily) } (17
y=ay+C,(x)

CONCLUSION

We found solutions for the perturbed Sine-Gordon

equation using Hamiltonian systems and Fourler
transform. Also, with mverse mtegrant factor we
guarantee the non existence of periodic orbits in some
regions of the plane for the dynamical system and we

generalize such system.
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