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Abstract: Tn a reservoir operation model, it is very important to check the efficiency by means of some

performances measuring indexes. Risk analysis of thus kind of optimization-simulation model may consist -

reliability, vulnerability and resiliency of the model. These basic performance measuring indices are analyzed
in this study. A Particle Swarm Optimization (PSO) algerithm is used to minimize the water deficit of a reservoir
system. Also another well-established optimization technique, Genetic Algorithm (GA) has used to compare
the results. Inflow patterns are categorized mto three different situations (high, medium and low) to construct

optimum release curves for every month. The release curves, constructed for a particular month mdicates the
amount of water release for a known storage condition. After constructing the release policy, simulation has
done with historical inflow data. The simulation results showed that the PSO provide better results in terms of
reliability analysis of the model. Also, it can handle the critical situation of low inflow more efficiently than GA

optimization technique.
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INTRODUCTION

Reservoir system operation is a nonlinear and
complex problem that deals with natural uncertainties and
water demands. A release policy is essential to operate a
reservolr system in optimum marmers. Here the release
policy is refered as a quantitive measurements for the
consecutive time periods that the reservoir authority may
follow to get desired benefits from the whole system. The
policy also should ensure exact supply and safety to the
commodity. It also encorporates the reservoirs operational
and physical constraints. Conventionally the optimization
prioblems for the operation policy of a reservoir system 1s
done by using Dynamic Programming (DP) (Yakowitz,
1982), Linear Programming (L.P) (Crawley and Dandy,
1993) and most popular Stochastic Dynamic Programming
(SDP) (Braga et al., 1991).

After incovering the basic idea of GA by Holland
(1975) and efficiency improvement of GA application by
Goldberg (1989), many researchers used the algorithm to
solve different kind of optimization problem. GA becomes
very popular as it solves nonlinear problems very easily.
In optimizing releases many studies prove the efficiency
of GA by solving both single and multi-objective
problems (Oliveira and Loucks, 1997, Chang and Chen,
1998, Ahmed and Sarma, 2005). GA has some drawbacks
and complexities too. Encoding and decoding of decision
variables is one of the main problems of GA. The basic
idea of GA mimicked the biological behavior of

chromosomes of living beings. The algorithm consists of
three main operators — selection, crossover and mutation.
The complexities arise with handling all operators and
sensitive parameters of GA leads researcher to use PSO,
another population based swarm intelligence. Kemmedy
and Eberhart (1995) firstly proposed the algorithm after
observing the intelligence of natural bird flocks in
searching foods. Unlikely GA in PSO algorithm, the
whole population of decision variables reached
optimum states rather than a single string. Less parameter
handling, relatively simple algorithm and better searching
capabilities are the main features of PSO over GA. Many
studies also proof the efficiency of PSO m different fields
(Kumar and Reddy, 2007; Khajehzadeh et af., 2011).

Tn this study a reservoir release policy has developed
by using both PSO and GA. The policy developed in this
study consists release curves for every month. With the
release curves a simulation has done. For the case study
Klang gate dam of Malaysia has chosen. The 22 year of
historical inflow data have used for simulation purposes.
From the simulation results reliability, vulnerability and
resiliency of the models has measured. In following
sections of the paper the application methods of GA and
PSO has given briefly, after that problem formulation and
risk analysis associated with using release curves has
described sequentially.

GA in reservoir operation policy: In a typical reservoir
operation problem, usually releases are considered as the

2186



J. Eng. Applied Sci., 11 (10): 2186-2192, 2016

decision variables. The population of GA is simply
generated by randomly created decision variables. Each
and every value of the variables represents a gene mn the
algorithm and different combination of these genes
construct different chromosomes or strings. So, the
population size of the algorithm actually refers the number
of strings of any iteration. As GA starts with a population
of variables so the set of monthly release policy in this
case was feeded to the algorithm as chromosomes. All the
mutial value of the variables are created by maimntaming the
boundary condition of the release amount of reservoir.
Here a set of tewelve consecutive monthly release amount
1s created and considered as a string or chromosomes of
GA. The next phase of the algorithm 1s selection process.
The selection process for standard GA can be easily
found in the study by Goldberg and Deb (1991 ). Here the
strings were shorted according to its objective function
values. As the problem 1s mimmization of water deficit, the
sorting has done as a manner of lower to greater fitness
values. Thus the algorithm selected only those release
policy those provides Afetr
selecting the chromosomes the crossover operators
start working. In this process
interchange  their
chromosome (release options). The new chromosomes

lower fitness values.

two chromosome
variables and creats two new
were again tested through the objective function for
fitness. Mutation also done by randomly selecting a
variable within the chromosome chain. Then the
chromosome were developed to achieve higher values in
terms of fitness. The crossover and mutation techniques
were taken from the study by Haupt and Haupt (2004).
The whole process continues to iterate till its reach the
given number as generation. Normally the algorithm reach

to a optimal solution after certain iteration.

Particle swarm optimization in reservoir operation
policy: The P3O algorithm searches the optimum
solutions of any problem by creating an imtial population
with randomly generated decision variables, like GA. Two
important factors in the algorithm control the whole
population in finding optimal solutions “velocity update”
and “position update”. The candidate solutions (decision
variables) of any particle calculate and remember its own
fitness. The position of any particle accelerated towards
the global best position by using Eq. 1 and 2. In any
search step t, the 1’th particle use to update its candidate
solution’s current position x'; by using local best p; and
global best p’, position achieved yet:

vt = glwl + o —xD o py -xp] (D)

tHl gt t 2
Xij 7V1] +X1] ()

Here, for the next iteration (t+1) the velocity updates
as v;"' by using Eq. 1 where, ¥ = constriction co-efficient;
¢, and ¢, = acceleration co-efficient, w = inertial weight
and r; and r, = random numbers mn [0, 1]. The steps
followed in this study in view of applying the PSO
algorithm in searching optimum release are given:

» Define the objective function and penalties of
constraint violation

»  Imtialization of the PSO parameters

»  Generate an imtial population with random values
within the allowable water release ranges

s Calculate the fitness of the particles

¢ Store the local best and global best among the
population

»  Generate random wutial velocity with the same
dimension as population in step 3

s  Update the particles to create new population by
using equation-1 and 2

» Crop to upper and lower range to maimtain the
allowable water release bounds

s Back to the step 4, if the iteration criteria not fulfilled.

MATERIALS AND METHODS

Model formulation for Klang Gate Dam (KGD): The
study was aimed to solve a real life problem ad so the
KGD was choosen to develop a release policy. KGD 1s the
major supplier of water for domestic use of Taman
Melawati, Malaysia. The mnportant particulars and the
characteristics of the dam 1s lited below m Table 1.

The Klang gates dam mostly supply water and
provide safety from flood to the community. The objective
function for this dam is choosen to minimize the water
deficit. The total inflow to the dam is categorized as three
sector. High, medium and low to cover the overall
scenario (Table 2).

The water deficit equation is given in Eq. 3 which is
set to be mimmized as much as possible with mamtaming
release and storage constraints:

Table 1: KGD dam characteristics

Parameters Values

Height of the dam 37m

Total capacity 6194 Miliion Gallon (MG)
Dead storage (8,0 16148.67 MG

Maximum capacity (S,.) 6194 MG

Release constraint 868<R<1379.50 MG
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Table 2: Monthly inflow to the KGD and water demands® of the community

Inflow (MG)

Months High Medium Low Demand
Jan. 1506.89 760.85 123.12 1298.64
Feb. 1901.08 1024.49 259.34 1083.09
Mar. 2831.70 1646.31 923.24 1152.45
Apr. 2919.74 1959.92 761.88 1173.00
May 2974.20 1786.87 938.31 1198.73
Jun. 2825.69 1355.22 447.97 1271.73
Jul 2717.32 1618.95 645.61 1258.14
Aug. 2948.26 1644.53 816.78 1206.41
Sep. 3368.12 1859.86 631.15 1160.05
Oct. 3545.83 2316.13 654.35 1204.14
Nov. 3838.47 2342.89 1021.79 1213.09
Dec. 2699.30 1455.7 340.69 1290.59

“Puncak Niaga (M) Sdn. Bhd., Malaysia

12
Min f(x) = ¥ (D, -x,)’ (3)

t=1

In Eq. 3, %, denotes release and D, stands for demand
matime periodt=1,2,...... . 12. The storage condition (S)
for a month, related to a certain release calculated by
using water mass balance (Eq. 4):

3.4 =S, + Inflow, —x, — Losses, (4

The penalty function approach is very effective,
sinple and hugely advised (Wardlaw and Sharif, 1999) in
reservolr release policy to handle the constraints of the
objective function. The approach is start with adding a
extra parameter with the objective function to control the
violation of the constraints by the variables. Basically it’s
a huge value created and named as penalty once the
constraint is not satisfied. This big numerical value is
added with the objective function value (in case of
minimizing objective function value) and thus elimmated
through the process. In this study the release options was
eliminated once it leads to violate the storage constraints
(Eq. 4). For this purpose two penalty terms are introduced
to Eq. 3. The penalty terms are:

0 if§,>S_
Penalty 1= )
cl(Smm - St) if St <Sm1n
and:
0 ifs>S, .
Penalty 2 = ).
C 2 (St - Smax ) lf St <Srnm

Here, C, and C, are the penalty co-efficients usually
given a large numerical value to be added with the
objective function. The value of these coefficients is
totally problem dependent. To construct the release
curves for every month, we run the model with two input

parameters inflows and initial storage. For each run of the
optimization model, we got a chain of sequential monthly
(Jan-Dec) optimum releases. From this sequential monthly
release release curves for every month has developed.

Risk analysis of reservoir release policy: In developing
areservoir release policy, the most three common indices
for measuring the level of the performances are reliability,
resilience and vulnerability (Hashimoto et al., 1982). We
considered all these measures and also add some extra
observations (such as model performance in critical
low/lugh flow) to analyze the risk associated with
adopting the release curves proposed in this study.

Reliability: Reliability is the most important indices in
checking the model performance m terms of achieving the
main goal of a reservoir system. Wurbs (1996) provides
the concept of volumetric (R,) and periodical (R))
reliability as Eq. 5 and &

R, =(v/V)x100% (5)

R, = (n/N)x100% (6)

In Eq. 5, v 18 the volume of water supplied or releases
and V is the volume of total targeted demand, so the ratio
of this two, gives the idea of water shortage. Tn Eq. 6, n is
the number of time period (here months) m which the
model can satisfied the demand and N is the total time
period of the observation. In this study, we considered
water deficit values rather than only water shortages. So,
the squared deficit provides a magnitude of model failure
covering both conditions water shortage and excess
releases. Also for periodical reliability measures we
provided the results from the simulation in three different
manners exact period (releases meeting demand),
oversupply or surplus period (releases more than demand)
and shortage period (releases less than demand).

Resiliency: By resiliency of any model, we can measure
the capability of the model to recover the failure (here in
terms of meeting demands). Resilience 15 the probability
for a shortage period to meet the demand for the next
period release. Loucks and Beek (2005) took the ratio of
no. of satisfied releases that follows an unsatisfied value
and the total no. of wnsatisfactory occurred as resilience
of a model. According to this formula we simply took the
ratio of maximum period of consecutive satisfied period
occurred by a model output to the total number of water
shortage period. So, mathematically it can be expressed
as:
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No. of period a satisfactory
9

Resilience — value follows an shortage

No. of total shortage period

There is another simple way to define resiliency. The
maximum no. of comsecutive failure can be taken to
measure the ability of a model to get back in track after
one failure. But in this way the lower no. of consecutive
failure is better in analyse of the resiliency for a
model.

Vulnerability: In the study by Loucks and Beek
(2005) measures of vulnerability of a model has given as
Eq. 8 Vulnerability expresses the magnitude of the
shortage of any reservoir system operation model:

Sum of positive values

(&)

of (demand-release)

Vulnerability = - -
No. of unsatisfactory period

In this study we followed Eq. 8 to calculate the
vulnerability and also the maximum shortage has recorded
to explain vulnerability of the model. Another useful
measure can be helpful to proof model efficiency n
system performance and risk analysis. We have computed
the mean inflow for every year and point out the critical
mflow situation (lowest average inflow) of a particular
year. For that critical period we compute the water deficit
and observed the performance of each model.

1600 , , ,

RESULTS AND DISCUSSION

Figure 1 is representing a release policy for Jan to
Dec and constructed for a definite inflow pattern. So once
the inflow data is recorded the curve can provide optimal
release policy for a certamn period of time. It can be easily
observed from Fig. 1 that the releases for high inflow can
supply ample amount of water to meet the demand and it
1s struggling to meet the demand dunng low inflow period.
Also most of the time the release curve are trying to
maimntain the demend amount regardless the inflow 1s
recorded as high or low which a good optimizaition model
should maintain. The curve 1s created also for different
level/ storage condition of the dam. Here it also success
to provide a logical optimum solution as it is suggesting
less release for low storage level and ligh release for lugh
storage level.

Figure 2 presents the fitness values of 1000 iteration
for GA and P3O optimization process (obtained single run
of the model considering medium inflow and medium
initial storage). For both cases same problem formulation
has used. According to Fig. 2, PSO optimization
model seems to achieve optimum state more quickly
(before 400 iterations) comparatively GA procedures
(700 iterations ).

Total 22 year (Jar, 1887 to Dec, 2008) of actual inflow
data was feeded in the system to simulate the release
policy from the developed release curves. Figure 3 and 4
1s the simulation results (only 14 years 1s presented for
better graphical presentation and understanding). The
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Fig. 1: Release curves of January month for three nflow category
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Fig. 3: Simulation results obtained from PSO release curve

simulated release amount from those historical value is
showing that the PSO release policy is better in achieving
water release more closer to the demand than the GA
release curves.

The periodical reliability of both models on the basis
of their simulation results has presented in Table 2. Here,
we can see that around 60% of total time period PSO
release policy has been able to release the exact amount
of demand where GA release policy showed 55.7% among
the total 264 month of simulation period. The excess
release from demand also cause wastage of water and is
not preferable for any hydrological optimization models.
In case of PSO model release curves provides excess

Table 3: Periodical reliability analysis for PSO and GA release policy

Time
Optimization More than Meet the Tess than Tatal no. of
techniques dermnand demand demand sirmulation period
PSO 32 157 75 264
GA 38 147 79 264

release for 32 times (12.12%) which is less than GA release
policy. The volumetric reliability, resiliency, vulnerability
and other performance checking measures are given in
Table 3.

Figure 5 presents the monthly average mflow for
the lustorical period of 1987-2008. The lowest inflow
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Fig. 5 Average monthly historical mflows for KGD

Table4: Risk analysis and performance measuring indices of PSO and GA

release policy
Measures PSO GA
Wastage due to excess release (% of total period)  12.12 14.4
Meeting demand (%o of total time period) 59.5 55.68
Volumetric reliability (Eg. 5) 9605 Q6%
Resiliency (Eq. 7) 0.2 0.15
Vulnerability (Eq. 8) (MG) 203.2 199.2
Max consecutive failure (months) 10 11
Worst shortage ever (% of demand) 53 51
Water deficit in lowest inflow period (MG) 2465.78 2498.92

occurred in the year of 1992. So, we observed the model
performance during that time period. In Table 4 the water
deficit (here shortage of water) occurred by using both
PSO and GA release curve has given from the simulation
results.

Though mn measuring vulnerability GA release
policy showed slightly better performances m all other
cases P3O outperforms. In meeting demand for greater
time period, less wastages due to oversupply, ability
to recover a failure and in handling critical situation
of low flow, P3O release policy performs better than
GA.

I 1 1 1 1 | |
2002 2003 2004 2005 200s 2007 2008 2009

Years

CONCLUSION

In this study a reservoir release policy is developed
by using PSO and GA. By adopting both optimization
procedures we developed monthly release curves
showmg the optimal release for a certan inflow and
storage condition. Simulation has done by using actual
historical inflow data. Risk analysis has done from the
simulation results of each operation policy, in terms of
reliability, vulnerability and resiliency. PSO release policy
seems more reliable in meeting water demand. Simplicity
in problem formulation and ability to handling critical low
inflow situation also suggest the proposed reservoir

release model.
ACKNOWLEDGEMENTS

This research 1s fully supported by the internal
research grant (J510050526) of university tenaga nasioanl
(UNITEN), Malaysia. Aouthor 1s very greatful to the
UNITEN and Sustainable Clean Energy research mstitute
to support the study.

REFERENCES

Ahmed, A and A K. Sarma, 2005. Genetic algorithm for
optimal operating policy of a multipurpose reservoir.
I. Water Resour. Manage., 19: 145-161.

Braga, B.P.Ir.,, WW.G. Yen, L. Becker and M.T. Barros,
1991. Stochastic optimization of multiple-reservoir-
system operation. J. Water Resour. Plann. Manage.,
117: 471-481.

2191



J. Eng. Applied Sci., 11 (10): 2186-2192, 2016

Chang, F.J. and T.. Chen, 1998. Real-coded genetic
algorithm for rule-based flood control reservoir
management. Water Resour. Manage., 12: 185-198.

Crawley, P.D. and G.C. Dandy, 1993. Optimal operation of
multiple-reservoir system. J. Water Resour. Plann.
Manage., 119: 1-17.

Goldberg, D.E. and K. Deb, 1991. A Comparative Analysis
of Selection Schemes Used in Genetic Algorithms. In:
Foundations of Genetic Algorithms, Rawlins, G.I.E.
(Ed.). Morgan Kaufimann Publishers, Inc., San
Francisco, CA., USA., ISBN-13: 978-1558601703, pp:
69-93.

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. 1lst Edn,
Addison-Wesley Publishing Company, New York,
USA., ISBN: 0201157675, pp: 36-90.

Hashimoto, T., I.R. Stedinger and D.P. Loucks, 1982.
Reliability, resiliency and vulnerability criteria for
water resource system performance evaluation.
Water Resour. Res., 18: 14-20.

Haupt, R.I.. and S5.E. Haupt, 2004. Practical Genetic
Algorithms. 2nd Edn., John Wiley & Sons, New
Jersey, USA. | ISBN:0-471-45565-2, Pages: 252.

Holland, J.H., 1975. Adaptation in Natural and Artificial
Systems:  An  Introductory  Analysis  with
Applications to Biology, Control and Artificial
Intelligence. 1st Edn., University of Michigan Press,
Amn Arbor, ML, USA., ISBN-13: 9780472084609,
Pages: 183.

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of the TEEE International
Conference on Neural Networks-IV, November
27-December 1, 1995, TEEE, Piscataway, New Jersey,
ISBN:0-7803-2768-3 1995, pp: 1942-1948.

Khajehzadeh, M., M.R. Taha, A. El-shafie and M. Eslami,
2011. Modified particle swarm optimization for
optimum design of spread footing and retaining wall.
I. Zhejiang Uni. Sci. A, 12: 415-427,

Kumar, DN. and M.JI Reddy, 2007. Multipurpose
reservoir operation using particle swarm optimization.
I. Water Resour. Plann. Manage., 133: 192-201.

Loucks, D.P. and E.V. Beek, 2005. Water Resources

UNESCO

Burope,

Systems Planning and Management.
Publishing, Netherlands,
TSBN: 9789231039980, Pages: 680.

Oliveira, R and D.P. Loucks, 1997. Operating rules
for multireservoir systems. J.  Water
33: 839-852.

Wardlaw, R. and M. Shanf, 1999. Evaluation of genetic
algorithms for optimal reservoir system operation. J.
Water Resour. Planning Manage., 125: 25-33.

Wurbs, R.A., 1996. Modeling and Analysis of Reservoir
Systern  Operations. Prentice-Hall, Upper Saddle
River, New Jersey, ISBN:97801 36059240, Pages: 356.

Yakowitz, S., 1982. Dynamic programming applications in
water resources. Water Resour. Res., 18: 673-6096.

Resour.,

2192



	2186-2192_Page_1
	2186-2192_Page_2
	2186-2192_Page_3
	2186-2192_Page_4
	2186-2192_Page_5
	2186-2192_Page_6
	2186-2192_Page_7

