Tournal of Engineering and Applied Sciences 11 (1): 162-166, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

Design and Implementation of the Lighter Version of Skein
Cryptographic Hash Function Using Verilog HDL.

Aparna Lakshmi Mooragondi, Sushrut Prabhakar, Avinash Yadlapati and Ranjan K. Senapati
Department of Electronics and Communication Engineering, KI. University,
Vaddeswaram, Guntur, Andhra Pradesh, India

Abstract: Secure Hashing set of rules-1 (SHA-1), created through National Institutes of Standards and
Technology n 1993 15 a hashing algorithm that was used to supply message digest. In 2005, cryptanalysts
determined attacks on SHA-1 suggesting that the algorithm may not be comfy sufficient for ongoing use. The
drawbacks of SHA-1 result in invention of new algorithm, SHA-2 which possessed excessive stage of
protection. One of the drawbacks of this algorithm becomes no longer likeminded with running systems. In
2012, NIST performed a hash feature opposition to select a standard for the latest SHA-3 cryptosystem of which
skemn was mto one of the five finalists. This research 1s aimed towards implementing “Lighter version of Skein”
which 1s based on the skein hash function in Verilog and its FPGA simulation using the Xilinx Virtex 7. The
design for both encryption and decryption of lighter version of skein has been discussed in this study. The
additives, it uses are threefish block cipher and the unique block iteration. The overall performance attributes
of lighter version of skein are discussed below. The principle goal is to examine and compare the latency,
throughput and delay of lighter version of skein with skein-256 and various other traditional block ciphers and

cryptosystems.

Key words: Skein cryptography. network secunity, Verilog. FPGA

INTRODUCTION

Because, the internet and different forms of electric
commumnication become widely wide-spread, electronic
protection of digital data 1s becoming mereasingly vital.
Cryptography 1s used to shield E-mail messages,
passwords, credit card information, corporate statistics
and so forth. A cryptographic hash function permits one
to effortlessly venify that a few mput data fits a stored
hash value but makes it tough to assemble any
mnformation that might hash to the same value or find any
two wique data pieces that hash to the same value. The
ciphers in hash functions are built for hashing: they use
large keys and blocks can effectively change keys every
block and have been designed for providing resistance to
attacks on the key.

Skein i1s a family of hash functions with three
different state sizes: 256, 512 and 1024 hits
(Aumasson et al, 2009). Each of these state sized can
support any output size (Ferguson, 2010). Lighter version
of skein, the cryptosystem discussed in this study has
been derived from skein-256 (A few components have
been changed to improve speed and throughput). It uses
the threefish cipher with some minor changes as the main
module for encryption of data in TUBI chaining mode, the
same as skein. The main principle behind lighter version
of skein is that a higher number of simple rounds provide

more security than a lower number of complex rounds
(Bellare et al., 1990). This lighter version of skein employs
72 rounds of encryption before it computes the cipher
text. Like skein, it makes the use of 18 different keys
{(which are derived from the user key) thus making brute
force attack on the system lughly difficult.

MATERIALS AND METHODS

Architecture: Lighter version of skein 13 a hash function
based on skein-256 and uses similar components (with
slight changes in functionality). Lighter version of skein,
like skein 13 a low memory cryptosystem and requires
<100 bytes of memory for execution.

Components of lighter version of skein

Threefish: Threefish is the tweakable block cipher at the
core of skein, denied with a 256, 512 and 1024-bit block
size. The threefish block takes three mputs, plaintext,
userkey (256 bits each) and a tweak of 128 bits. The
output of the function is a ciphertext of 256 bits.

Unique Block Iteration (UBL): UBI 1s a chamning mode
that uses threefish to build a compression function that
maps an arbitrary input size to a fixed output size
(Ferguson et al., 2010).

Corresponding Author: Aparna Lakshmi Mooragondi, Department of Electronics and Communication Engineering, KL University,
Vaddeswaram, Guntur, Andhra Pradesh, India

J. Eng. Applied Sci., 11 (1): 162-166, 2016

Table 1: Permulation LUT

LUT points
No.l No.2 No.3 No.4 No.5 No. 6 No.7 No.8 No.9 No 10 No. 11 No.12 No.13 No.l4 No. 15 No. 16
91 168 83 119 194 23 45 54 149 155 203 216 115 71 11 3
106 140 231 243 97 147 151 101 89 94 124 185 166 117 100 122
41 74 42 30 21 17 198 218 250 254 87 68 33 38 102 154
163 177 112 32 133 247 253 111 47 233 103 130 69 139 217 183
28 135 78 37 49 63 171 204 35 196 227 76 136 201 143 191
215 7 79 0 10 134 114 242 169 153 70 20 237 164 131 137
105 121 184 150 64 208 162 129 99 82 132 199 235 26 14 175
239 222 219 109 107 135 170 167 63 207 22 4 12 200 232 238
84 67 34 19 5 179 245 224 144 95 72 44 27 31 16 226
211 180 157 138 104 123 252 240 160 159 181 96 81 86 6 29
13 202 187 85 36 53 80 176 182 210 241 209 113 88 6 29
93 58 al 1 249 161 146 145 225 18 178 2 66 228 212 116
148 197 229 214 213 118 230 246 9 24 8 25 73 152 90 59
43 62 46 248 126 110 141 125 142 158 173 190 174 188 221 172
223 156 220 255 15 77 92 75 251 236 186 189 234 127 40 39
192 193 57 60 55 56 98 128 18 206 195 205 52 50 51 224
Plain text X, X,
SR SN Y N S N S |
4,{ M
' + ¥ v
| Mix | | Mix | | Mix | | Mix | P
I T T T T T =
| Permute |
r ¥ ' v ¥
| Mix | | Mix | | Mix | | Mix |
* ¥ ¥ r ¥ v ¥ v
| Permute |
) S T T <<
| Mix | | Mix | | Mix | | Mix |
I T T T T T
| Permute |
¥ r + ¢ 4§
| Mix || Mix || Mix || Mix |
v
r ¥ ¥ ' y ¥
| Permute | ‘/ -\
Shkeyl ¥ ¥ ¥ ¥ ¥ ¥ ¥ '\J
B |
v v
Y, Y,

Fig. 1: Threefish block cipher for encryption

The threefish block cipher 1s the heart of the Lighter
version of skein cryptosystem. The mam components of
threefish are the mix and permute function as shown in
Fig. 1. The Mix and Permute functions have been
described in detail below Hq. 1 show MIX operation::

Y, = (3, +X)mod ™, Y, = (X, <<<16) @Y,

Encryption; MIX function: Figure 2 shows the mix
function. The MIX function 1s an integral part of the
threefish ciphers. It takes two inputs of 64-bit each and
performs three basic operations on the data words;
Addition modulo 2%, arithmetic shift (Wakerly, 2006) and
XOR operation.

Permutation operation: Table 1 shows a sample Look
UpTable (LUT) used m the tlweefish cipher. The

Fig. 2: Mix function

permutation function is used to diffuse the outputs
obtained from the previous rounds of MIX function
and scramble them to create new inputs for the
following MIX round Eq. 2 show key schedule algorithm:

sk,=k,; sk, =k, +t,
sk,=k,+t,; sk, =k, >>{2}

Key scheduling algorithm: After every four rounds of
MIX and permute, a subkey 1s added to current threefish
state. For the first round, user key and plaintext are
XORed and then after every four rounds, Key Scheduling
algorithm uses tweak and the key of previous rounds to
generate a sublkey (Burr, 2006).

163

J. Eng. Applied Sci., 11 (1): 162-166, 2016

Table 2: Tnverse permmutation LUT

LUT points
No. 1 No.2 No.3 No.4 No. 5 No.6 No. 7 No.8 No. 9 No.10 No. 11 No.12 No. 13 Neo. 14 No. 15 No 16
83 179 187 15 123 132 158 81 202 20 81 14 124 160 110 228
142 37 185 131 91 36 122 5 201 203 109 140 &4 159 35 141
51 44 130 72 164 67 45 239 238 32 34 208 139 6 210 56
248 68 253 254 252 165 7 244 245 242 177 207 243 178 200 120
100 69 188 129 43 a0 90 13 138 204 33 231 75 229 66 82
166 156 105 2 128 163 157 42 173 24 206 0 230 176 25 137
155 20 246 104 30 23 46 58 148 9% 16 116 175 115 218 55
50 172 86 12 191 29 197 3 174 a7 31 149 26 215 212 237
247 103 59 94 106 52 85 117 T6 as 147 6l 17 214 216 78
136 183 182 21 192 8 99 22 208 59 47 9 225 146 217 153
152 181 102 48 93 a5 28 119 1 88 118 70 223 218 220 111
167 49 186 133 145 154 168 a3 o8 27 234 162 221 235 219 79
240 241 4 250 T3 193 38 107 125 T7 161 10 71 251 249 121
101 171 169 144 190 196 195 80 11 62 39 114 226 222 113 224
135 184 143 74 189 194 198 18 126 57 236 108 233 a2 127 112
151 170 87 19 255 134 199 53 211 180 40 232 150 54 41 227
_l Y, Y]
Key ¢ k, l
64 bit each k,
[o
kx |
Tweak t,
64 bit cachY T <<<
1
v
Fig. 3: Key schedule algorithm
The key from the previous round 1s divided mto four
64 bit words and the tweak 1s divided into two 64 bit v v
words. Key Scheduling algorithm makes use of modular X, X,

addition 2 and logical right shift of a constant arbitrary
value decided by the designer. The 464 bit words from
these operations concatenate to form a new subkey
show mn Fig. 3.

Thus, key schedule algorithm generates a new
subkey every time. It can be thus concluded that due to
the addition of a 256 bit subkey after every four rounds,
a high level of security can be achieved by making the
cryptosystem immune to cryptanalysis.

Decryption: Decryption 1s the exact mverse of the
encryption algorithm. To decrypt the ciphertext generated
from the threefish block cipher, the text is passed through
the inverse threefish cipher which consists of the inverse
mix function and the inverse permutation table. Also, the
keys are supplied in reverse order, 1.e., the 18th subkey of
the encryption system 1s the 1st subkey of the decryption
algorithm and vice versa. The mverse MIX function and
the inverse permutation table have been discussed below.

Fig. 4: Tnverse MIX function

The point to be noted 1s that there 15 no change m the key
scheduling algorithm. The keys used for encryption are
used for decryption as well, in reverse order.

Inverse mix function: The mverse MIX function 1s an
integral part of the inverse threefish cipher. Tt is created
by using the inverse of the operators of the MIX function
(Tilich, 2009). It consists of three digital systems, XOR
operator, left shifter and subtractor. The subtraction in
this module is performed with the help of a carry look
ahead adder. Figure 4 shows the block diagram of the
inverse MIX function.

Inverse permutation operation: Table 2 shows a sample
Look Up Table (1.UT) used in the inverse threefish cipher.

164

J. Eng. Applied Sci., 11 (1): 162-166, 2016

The inverse permutation function is used to diffuse
the outputs obtained from the previous rounds of inverse
MIX fimetion and scramble them to create new mnputs for
the following mverse MIX round.

RESULTS AND DISCUSSION

The design was simulated using structural and
dataflow modelling. The components defined have been
used to design the threefish cipher. Tt can be said that the
threefish module 1s the top module of the design. This
section shows the Verilog simulation and synthesis
results of the threefish cipher as well as the verse
threefish cipher. Figure 5 and 6 shows the software
simulation of both encryption and decryption of data in
the lighter version of skein cryptosystem. The tool used
for the implementation was NC simulator by cadence.

Figure 5 shows the simulation results of 72 rounds of
encryption m which an XOR operation, right shaft
operation, carry look ahead addition, permutation look up
table and a key scheduling algorithm are used. For this
plain text of 256 bits, twealk of 128 bits and user key
of 256 bits are fed as inputs. The output 18 the cipher text
(encrypted data) which 1s of 256 bits.

Figure 6 shows the simulation results of 72 rounds of
decryption in which an XNOR operation, left shift
operation, carry look ahead subtraction, inverse
permutation look up table are used. The keys that are

File Edt Yew Bwgors Forpal Singlabon Windows Help

used in the encryption are shared here. For this cipher text
of 256 bits, tweak of 128 bits and user key of 256 bits are
fed as mputs. The output is the plain text (decrypted data)
which is of 256 bits. From Fig. 5 and 6, it 1s clear that the
text that 1s fed for encryption 1s the data that 13 observed
after decryption. Upon successful simulation of the
Verilog code, the same system was implemented in
hardware using the Xilinx Virtex 7 FPGA simulator.

After successful simulation in NC Simulator
(Cadence), the synthesized for FPGA
implementation using Xilinx ISE 10.1. Then, the program
was dumped mto the memory mnto the FPGA board Xilinx
Virtex 7. Since, this is the lightweight version of the skein
hash cryptosystem (Kamal and Hossain, 2004); it was
easily implemented on the FPGA device, Xilinx Virtex 7
(Webster and Lukowiak, 2011). Details of the hardware
implementation have been shown below:

code was

» Lighter version of skein-256 (encryption)

» Selected device: 7vx1140tflg1930-2

s Number of slice LUTs: 25301 out of 712000 (3%)

¢ Number used as logic: 25301 out of 712000 (3%)

» Number of fully used LUT-FF pairs: 0 out of 25301
(0%)

» Number of IOs: 896

s Number of bonded TOBs: 896 out of 1100 (81%)

s Delay: 920.721ns (Levels of logic = 1954)

» Total real time to Xst completion: 121.00 sec

cddenci

(EwlEEd

Search Nanss: Signal=

B Tineax =30 Coo wll - ok]
%2 Ml i e)

o~ Curior @+
b A1FICAF
' COEISEER

5 0BI0I0H

i

Fig. 5: Software simulation of the encryption algorithm (threefish cipher)

Gdls c DDA BEd - E-
Seanch Names: Signal v ._-_. s Seanch Tines: | Valuew :
W Tineav - wnse|ms- dm w10

m:. Butineval

£ Corsor-Buselne=s Jny
X

3. i STy 20 R R B2 i |
¥+ o T S e ==

Ting: 5% [0 30ns

Fig. 6: Software simulation of the decryption algorithm (inverse threefish cipher)

J. Eng. Applied Sci., 11 (1): 162-166, 2016

Total CPU time to Xst completion: 120.71 sec
Total memory usage: 374344 kb

Lighter version of skein-256 (decryption)
Selected device: 7vx1140tflgl 930-2

Number of slice LUTs: 22369 out of 712000 (3%)
Number used as logic: 22369 out of 712000

(3%)

Number of fully used LUT-FF pairs: 0 out of 22369
(0%)

Number of unique control sets: 0

Number of los: 896

Number of bonded TOBs: 896 out of 1100 (81%)
Delay: 1284.911ns

Total real time to Xst completion: 254 sec

Total CPU time to Xst completion: 253.56 sec
Total memory usage: 546248 kb

CONCLUSION

Lighter version of skein provides slightly higher
processing speeds and computational abilities compared
to its heavier counterpart, skein-256. The main difference
between skein-256 and lighter version of skein was visible
during the HDL simulations of the two modules in NC
Simulator. Lighter version of skein has mimimal or no delay
in software siumulation in computation of the ciphertext.
For seventy-two rounds of the skein cryptosystem, the
delay found in skein-256 was 1126.389 ns while the delay
i Lighter version of skein was just 920.721 ns m the
hardware. The Lighter version of skein model is
almost 1.5 times faster as compared to skein-256. The most
critical thing 1s designing the decryption part as the data
that is fed as input for encryption and the data that is
obtained after decryption should match. A comparison of
throughput versus number of rounds was calculated to
make a thorough comparison between lighter version of
skein and skein-256. Table 3 shows the data accumulated
for throughput of various rounds of the lighter version of
skein cryptosystem. Table 4 shows the data accumulated

Table 3: Comparison of throughput for encryption and decryption for
various rounds of lighter version of skein

Throughput for Throughput
Rounds Encryption (mbps) decryption (mbps)
1 31,800 13,996
8 4,670 3,606
18 2,150 1,818
36 1,380 960
72 695 498

Table4: Comparison of various specifications of skein and lighter version
of skein cryptosystem

Specifications Skein-256 Lighter version of skein
Memory usage (MB) 487.568 460.21

CPU time to XST completion (sec) 210.25 186.855

Delay (Nano sec) 1126.389 920.721
Throughput {mbps) 568.1 600

166

for comparison of various specifications of lighter version
of skemn with skemn-256. Hence, on comparing the memory
usage, delay, throughput and speed of Lighter version of
skem with skein-256 proves that this design 13 a
lighter version of skein (less delay, more throughput
and high speed).

ACKNOWLEDGEMENTS

The researcher would like to thank the entire
semiconductor team at cyient for their immense support
and motivation. Without their guidance this study
would not have seen the light of day. A special
thanks to Mr. Ram Gollapudi for allowing the researchers
to use the compames valuable resources to complete
the project.

REFERENCES

Aumasson, J P, C. Calik, W. Meier, O. Ozen, R.C.W. Phan
and K. Varici, 2009. Improved cryptanalysis of skein.
Proceedings of the 15th International Conference on
the Theory and Application of Cryptology and
Information Security, December 6-10, 2009, Tokyo,
Tapan, pp: 542-559.

Bellare, M., K. Joe and R. Phullip, 1990. The Security
of Cipher Block Chaining. In: Advances 1n
Cryptology-Crypto 94, Desmedt, Y.G. (Eds.).
Springer-Verlag, New York, pp: 341-358.

Burr, W.E, 2006, Cryptographic hash standards:
Where do we go from here?. IEEE Secur. Privacy,
2: 88-91.

Ferguson, N., S. Lucks, B. Schneier, D. Whiting and
M. Bellare et ai, 2010. The Skein hash fimction
family. Submission NIST., 7: 1-86.

Kamal, A HM. and G. Hossain, 2004. A new approach of
image encryption a part of cryptography. Asia T.
Inform. Technol., 3: 607-610.

Tilich, 5., 2009. Hardware implementation of the SHA-3
candidate Skem. Institute for Applied Information
Processing and Communication, Graz University of
Technology, Austria.

Wakerly, T.F., 2006. Digital Design Principles and
Practices. Pearson Education, New Jersey, United
States, Pages: 261.

Webster, DM. and M. Lukowiak, 2011. Versatile
FPGA architecture for skein hashing algorithm.
Proceedings of the 2011 International Conference on
Reconfigurable Computing and FPGAs (ReConFig),
November 30-December 2, 2011, IEEE, Cancun,
Mexico, ISBN: 978-1-4577-1734-5, pp: 268-273.

	26346-JEAS 11 (1) 162-166_Page_1
	26346-JEAS 11 (1) 162-166_Page_2
	26346-JEAS 11 (1) 162-166_Page_3
	26346-JEAS 11 (1) 162-166_Page_4
	26346-JEAS 11 (1) 162-166_Page_5

