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Abstract: Tn this study, we establish existence of solutions of impulsive Quantum Stochastic Differential
Inclusion (QSDI). Our technique is based on the fixed point approach for multivalued maps.
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INTRODUCTION

Esastence of continuous selections of multifunctions
associated with the sets of solutions of Lipschitzian
Quantum Stochastic Differential Inclusions (QSDIs) have
been considered by Ayoola (2008) while the existence of
solution of quantum stochastic evolution arising from
hypermaximal monotone coefficients was established by
Ekhaguere (1992). Results concerning the topological
properties of solution sets of Lipschitzian QSDIs were
also considered by Ayoola (2008). In order to generalize
m the concerning  QSDIs,
existence of continuous selections of solutions sets
of non-lipschitzian quantum stochastic differential
mclusions and existence of continuous selection of
associated with quantum stochastic
evolution inclusions under a general Lipschitz
condition were considered by Bishop and Anake (2013),
respectively.

In the case of classical differential equations,
intensive research have been done concerning the

the results literature

multifunctions

existence of solutions of mmpulsive differential equations
and inclusions of several types (Fan and Li, 2010,
Federson and Schwabik, 2006; Pan, 2010, J1 and Li,
2011). For the importance and applications of impulsive
differential inclusions (Bishop and Agboola, 2014,
Ogundiran, 2013). The role of mpulsive differential
inclusions in the theoretical and analytical study of
differential equations as outlined in the above references
is a motivation for studying this class of inclusions. In
“QSDE” not much has been done concerning impulsive
QSDEs. However, some results concerning impulsive
(QSDEs have been established by Bishop and Agboola
(2014) and Ogundiran (2013). This research is therefore,
concerned with similar results  established by
Benchohra et al. (2006). Therefore, the results obtained
here are generalizations of analogous results due to the

references (Benchohra et al., 2006) concerning classical
differential inclusions to the non-commutative quantum
setting.

In what follows (Ayoola, 2008, Ekhaguere, 1992;
Ogundiran, 2013), we adopt the defimtions and
notations of the following spaces; PC(I, A, PCd, A),
PC(I, sesq(D®E)), PC'{, sesq(DEE)), clos(N), clos(A), Ad(A),
AdA)ye. LA L8 (A), and the Hausdorff
topology on clos(A). The Hausdorff distance, p(A, B)
is defined as:

plA. B) = max(8(A, B), 8(B, A)), A, Be clos(C)
And:

d(x, B) =inf,

veB

x-y], 8(A, B) =sup, _, d(x, B)
where, xcC is a complex number. Then p is a metric on
clos(C) and induces a metric topology on the space.
All through the remaining part of this research we take
T, £ € DSE to be arbitrary except otherwise stated.

Lemma 1: Assume that F: IxE - P(E) 1s a nonempty,
compact-valued, multivalued map such that:

(a) (t,u) -~ F(t, u) is L ® B measurable
(byu - F(t, u) is lower semicontinuous for a.e. t € T; for
each 1 > 0, there exists a function h,eL'(J, R,) such that
IF(t, Wi, == sup§ o] - veF(E W} <hit)
for a.e. te] and for ueE with |Ju| <r. Then, F is of Ls.c. type.

Theorem 1: Tet Y be separable metric space and let N: Y-
P(L'(I, E)) be a multi-valued operator which has property
(BC). Then N has a continuous selection, that is, there
exists a continuous function £ Y - L'(J, E) such that
f(x)eN(x) for every xeY.
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PRELIMINARTES

We mtroduce the followmg QSDI in integral form:

X(0e X+ [ (ECX(s), $)d n, (5)+F(X(3), $)dA, () +

G(X(s), s)dA;(s) + H(X(s), s)ds) )

Kty =%, te[0,T]

Inclusion (Eq. 1) is the usual Hudson and
Parthasarathy (1984) formulation of Bo-son quantum
stochastic calculus. In the notations and definitions of
various spaces of stochastic processes introduced in the
research by Ekhaguere (1992), the coefficients E, F, G,
H, lie in 12 (0. T|xA),, where A is a locally convex
topological space defined by Ekhaguere (1992). The
underlying elements of A consists of linear maps from
DEE into fel'(L,(R,)) having domains of their adjoints
containing DEE.

The maps f, g, © appearing in Eq. 1 lie in some
function spaces defined by Ayoola (2008), Bishop and
Avyoola (2015) and Bishop and Anake (2013) while the
mtegrators A, A, A; are the gauge, creation and
annihilation processes associated with the basic field
operators of quantum field theory. D 1s some pre-Hilbert
space whose completion 1s &R, v 1s a fixed Hilbert space
and L*R.) is the space of square integrable y-valued
maps on R,. The inner product of the Hilbert space
Rel' (L, (R.)) will be denoted by (., .} and ||| the norm
induced by {, .}. E the linear space generated by the

exponential vectors in Fork space I'(L, AR,)).

Definition 1:

(1) By a multivalued stochastic process indexed by
I=1[0, T]cR, we mean a multifunction on I with values in
clos(A).

(11) If ¢ is a multivalued stochastic process mdexed
by I = [0, T]=R., then a selection of ¢ is a stochastic
process X: [ A with the property that X(t)ed(t) for all tel.
A multivalued stochastic process ¢(t) will be called (ii1)
Adapted if Gpit)c A, for each tel.

(iv) Measurable itt—d,, (x, $(t)) is measurable where x eA.
(v) Tt is L'-measurable in the sense by Benchohra ef al.
(2006).

(vi) Locally absolutely p-integrable if the map t—| ()],
lies in 15 _(A), te 1, pe (0, o).

We denote this set by 1 (A) = and for pe(0, =),
IR, the set 12 (IxA)  denotes the set of maps ¢:
IxA—clos(A) such that the map t—d(t, X(t) lies in
L: (A) ., for every Xelr (A). It has be shown by
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Ekhaguere (1992) that the following first order initial value
non-classical ordinary differential inclusion in integral
form:

d

L (- XOE)e PXX(s), 5)n, &)
(n, X(08) = {n, %)

(2)

15 equivalent to mtegral inclusion (Eq. 1). As sexplained
by Ekhaguere (1992), the map P appearing in Eq. 2 has the
form:

P(x, 1), £) = (ME)(x, 0N, &)+ (vF)x, 00, &) +
(6G)x, D, &)+ Hix, tin, &)

M, £EDEE (x, t)e AxI. For the defimtion of a solution of
(Eq. 1) (Bishop and Aghoola, 201 4; Ekhaguere, 1992) and
the references therein. Next we introduce the impulsive
QSDI. Let the intervals I,,I,, .., I, Cand I k=1,2, .. m
be as defined by Ogundiran (2013). where, t, =0, t,., = b,
I =10, b], O<t,<...<t,,, =b. For x:1—sesq(D&E), the space
PC(I, sesq(DE)} equip with the norm:

HX”PC = SUP{|X(t)(TI= E_.)| te I}

1s @ Banach space. We consider the following impulsive
QSDI given by:

dx(t)e (E(x(t), t)id A, (1) + Fx), t)dA (1) +
G(x(t), t)dA;(t) + H{x(t), t)dt),
almostallte Lt=t,,k=1..,m
Ax|,_, = Jx(t, ). k=1...m
x(0)=x,,te[0, T]

(3

where, P: IxA—clos(A) is a multivalued map with
non-empty compact values and J,eC(A, A), (k=1,2, .., m)
and Ax(t,) = x(t!)-x(t;) represents the jump in the state x at
t,.

Definition 2: A stochastic process xePC(I, A)N((t, t.,),
A, O<k<m is called a solution of (Eqp. 3) if x satisfies the
differential inclusion (Eq. 2) for almost all 1-{t, ..., t,} and
the conditions Ax‘t:th = I ety and x(0) = x,. Next, we
establish the following useful result.

Theorem 2: Suppose that the following is satisfied:
(H,) there exists a continuous non-decreasing function
Yz [0, e3(0, «) and p*eL! (I, R,) such that:
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[t xED| < plethwr([] ) @)
fora.e. tel m, £ DRE and xeA with:
% i du

¢ ()d )

J:H Pre(8)ds < J.NH g (5)

XEI”HCSNEHNqé k-1 —Supxe[l\fle‘kg LA ‘Jkl(x)|+Mm§k2

1
Mo ps = Y-I(J-tk_z Pﬁg(s)dS) (6)
fork=1, ..., m+1 and:
7
¥,(2) = ”“uf( ) .z2N 1 {1, .., m+1} (7

Then, foreachk =1, ...
M, ., such that:

,m+1 there exists a constant

sup{”x(t)”nE: te [t,, tkrl]} SMee (8)

for each solution x of the problem (Eqg. 3).

Proof: Assume x is a solution of (Eq. 3), then x,,, isa
solution of (Eq. 2) for a.e. te[0, t,]. Let t*c[0, t,] such that:

Sup{Hx(t)Hn&: te [0, tl]} = Hx(t*)”n& )
then from (Eq. 4), we get:
d
—-n, X(0)E
M <p*(t), forae. te [0,t,] (10)
w({n, X(tE))
d
. a(ﬂ: X(S)E_.> (11)

7(1394) d
vl sy B P

continuing as above, we have:

1, (=), )]} = IL;;T“ 9 q::u) <J' Png(s)ds<-|‘ Pl (s)ds
(12)
And:
‘X(t*)('ﬂ: é)‘ - Sup{|x(t)(n: é)‘ te [tp 2
(13)

mg, 1

vﬂLﬁ@m#=M
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we continue in this order and allow X|m.,n be a solution of
Eq. 3, where we replace J, t [0, T] with T, t, [t.. Tl,
respectively. We then cbtain a constant M, ,, such that:

sup{x(0n, £): 1€ [, T} <, [ pletords -

ni m
(14)
This yields:
I/, < max{jy(Om. &} M, k=1, m+1:= b
(15)

MAIN RESULTS

Theorem 3: Assume that the following conditions and the
hypothesis of theorem 2 are satisfied:

H) P: IxA—clos(A) is a nen-empty compact valued
multivalued map (Bishop and Anake, 2013) such that:
H,) (t, x)~P(t, x)(n&) is L'-measurable.

H3) for ae. tel and n, £ DEE, the maps x—i(t, X) (NE),
e {pE, uF, oF, H} are non-empty upper semicontinuous
(resp. lower semi-continuous) multivalued stochastic
process in the sense by Ogundiran (2013).

H4) for each r=0 there exist a function h, (I, R,) such
that:

IP(t, x)(M, &)] := sup{[uin, £)]: ve P(t, x)} <h . (1)

for a.e. tel and for xeA with |x| <r.

H5) there exists a continuous non-decreasing function
defined in preliminaries and p*cL! (I, R,) such that (Eq. 4)
holds fora.e. teL n, £e DQE and xeA with:

P = du 3 16
L P! (s)ds < L e ¢c= Hxn‘|n§+k§10k (16)
Where; <ND=Nm§kl—Sup [y, Mgz ] |Jk1(X)|+Mq§k2
Mg s = (I 1pna(s)ds) (17
fork =1, .., m+1 and then the inpulsive QSDI (Eq. 3) has

at least one solution.

Proof: By (H,)
(Benchohra et al,

and (H,) imply TLemma 1

2006) and by Theorem 1
(Benchohra et al, 2006) we have that there exists a
centimous map f PC(I, A»-L' (I, A) such that
fxo(n, ENEP(x,(n, £)) for all xePC{J, A). Consider the
following problem:
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dx(t) = (E(x(t), thd a_ (t)+ Fx(), tHdA, (t)+
G(x(t), HdA, (H) + Hx(t), t)dt),
almostallte Lt#t, k=1 ..m
Ax|,_, =Ttk =1,...m
x(0)=x,,te [0, T]

(18)

Remark: If xePC(I, A) is a solution of problem (Eq. 3),
then x 1s a solution of problem (Eq. 3). Since, existence of
solution for problem (Eq. 3) have been established by
Ogundiran (2013), we follow a similar procedure.

Next we transform the problem to a fixed point
problem and use the schauder-tychonov fixed point
theorem to establish our result. Consider the operator
N: PC{l, sesq(D&E)) — PC(L, sesq(DRE)) be defined by:

NGHOM, £) = (n.x,2)+ [ ofs, x(s))n, Exds +
PIRRCICH

D=ty <t

(19

we show that N is compact.
Step 1: N 1s continuous:
NG, (DM, SN0, &) <
[[IPts. x, ). ©)-PGs. x(w)m, £)lds +
3 [rtx, ctm, B (it m, ) <

[[PG. x, ()M, £)-PGs, X&), E)fs +
¥ G, M, EX, (it i, &)

D=ty <t

Since, the map P and I,, k=1, ..., m are continuous then:

NG, ekt <|Pes, x, (), EXPG, xs)Hn, £, +
30105, X, ER1, (508, ), B 0
k=1

as n—0.

Step 2: N maps bounded sets mte bounded sets in
PC(L, sesq(DRE). Let B be a bounded subset of
PC(I, sesq(D@E)) for any x€B let 1 be a constant such that:

NGO, £) = (m, %,5)+ [[ 005, x())m, £)ds +
¥ 5 x(t))m, B <

<ty <t

Hxn||+‘hn§‘L‘ + i I, (x(t)] =1
k=1
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Step 3: N maps bounded sets into equicontinuous
sets in PC(, sesqDEEY. Let T, T,61°. 1T ,and set
B,(0) = {x,, € PC(, sesq(DEE)): |x,, <q}. Case 1, t=#t,
1=1,..,m:

NGO, E-NCIE M, 8 < [Mhye s+ 3 [ Gx(t,)

Oty =151

The right hand side of the above mequality tends to
zero as T,~1,. This proves equicontinuity for the first
case. Case 2; t = t. The proof is siumilar to that given in
Theorem 3 by Ogundiran (2013). Then by hypothesis (iv)
by Ogundiran (2013) together with the Arzela-Ascoli
theorem N(Bq) is equicontinucus. Lastly, we show that
the set:

R(N) = {x e PC(], sesq(DEE)):

Ax =INx, 0<A <} C B (0)

15 bounded, g>0. Let xeR(N), be defined as above. Then
for each tel, we get:

x(tm, &) = A[{n, x,&) +
[[Pes. xim, s + 3 L ix(t, )]

0
D=ty <t

x(D)(m, &) <[x,(n, &)+

[ ptsw|xisim, &)

ds + i T (x(t, )
k=l

Let u(t) represent the left hand side of the above
inequality so that:

fotom. )< [x, . 8]+ [[psnlxiim, Blds + e,
P
and att = 0 we get:

v(0) =[x, |+ i ¢,
k=1
VDM, &) = p(Ow]x(im, &)

for a.e. tel and by the mcreasing property of |, we have:

v'in, &) < [ptyr(x(H(n, &)
For each tel, we get:

J‘t v'{sn, &)

— 72 ds < ' d:
SWUET, ) Jypriras
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We then have:
v du v b = du
—= ds < ds < —_—
080 o< o[

and |u(t)(n, £)| <d and hence x| := sup {|x(t)(n, £)|: 0} <d
for a constant d depending only on p and ¢ and therefore,
R(N) is bounded.

CONCLUSION

Having  satisfied all assumptions of the
Schauder-Tychonov’s fixed point theorem, we conclude
that N has a fixed point x which 1s a solution of the
problem (Eq. 8) and by the above remark, x is a solution of
the problem (Eq. 3).
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