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Abstract: In this study, a variable step size approach is adopted in implementing Implicit Block Multi-step
Method for solving non-stiff ordinary differential equations. This idea has many computational advantages

when compared with other methods. They include designing a suitable step size/changing the step size,

stopping criteria (prescribed tolerance level) and error control/mmimization. This approach utilizes the estimates

of the principal local truncation error on a pair of explicit and implicit of Adams type formulas which are
implemented in P(CE)® mode. Gauss Seidel approach is employed for the implementation of the proposed

method. Numerical experiments are given to show the efficiency of the method.
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INTRODUCTION

Lmear multi-step methods generally come 1n
families. The most popular for non-stiff problems 15 the
Adams family while stiff problems belong to Backward
Differentiation Formula (BDF) family as reported by
Uri and Linda. According to Cash and Semnam (1993),
the most two commonly used classes of formulae for
the mumerical solution of non-stiff initial-value problem
are Adams and Runge-Kutta Methods. Nevertheless,
Runge-Kutta and Adams formulae are frequently quite
effective for solving non-stiff ODEs both types of
methods possesses certain well-known computational
disadvantages.

In this study, the intent has to do with Implicit Block
Multi-step Method for the numerical mntegration of
non-stiff ODEs of the form:

ym(x) - f(Xa ya y': y”): Y(a) - OL: y’(a) - B) (1)
y"{a)y="¥,xe[a,b]and £ RxR™ - R™

The solution to Eq. 1 1s in general, written as:

21] =1 a1Yn+1 - h3 Zj =1 Bifn+i (2)

where, the step size is b, ¢, = 1, o, 1 =1, .., j, B are

unknown constants which are umquely specified
such that the formula 153 of order j as discussed by
Akinfenwa et al. (2013).

We assume that feR is sufficiently differentiable on
x€[a, b] and satisfies a global Lipchitz condition, 1.e., there

1s a constant L >0 such that:

[, y)-flx, 9| <L|y-¥

VY, YER

Under this presumption (Eq. 1) assured the existence
and uniqueness defined on x€[a, b] as discussed by
Kie and Tian (2014).

Equation 1 has been virtually used n a broad variety
of real life applications mostly mn science and engineering
field and other areas of applications. Researchers have
suggested that the reduction of Eq. 1 to the system of
first-order equations will be computationally expensive
and wastage of human effort (Awoyemi, 2003;
Mehrkanoon, 2011, Adesanya et al., 2013; Anake et al.,
2013; Awoyemi et al, 2014). While others prefer to
solve special third-order ODEs. This approach is well
established n literature as discussed by Olabode and
Yusuph (2009) and Mechee et al. (2013). Thus, there
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is the need to adopt a variable step size approach for
solving directly (Eq. 1) based on Implicit Block Multi-step
Method.

In the recent past, some researchers such as
Awoyemi (2003), Olabode and Yusuph (2009),
Adesanya et al (2013), Anake et al. (2013) and
Awoyemi et al (2014), just to mention a few have
examined and proposed a better method for solving
general special third order ODFEs directly.
Mehrkanoon implemented directly wvariable step size
block multistep method for solving general third order

and

ODEs. The method which combined a pair of explicit and
mmplicit of Adams type formula implemented in P(CE)™
mode. Moreover, this is directed towards backward
differentiation formula. Majid developed two-pomt four
step direct implicit block method in simple form of
Adams-Moulton Method for solving directly the general
third order (ODEs) applying variable step size. Again,
this 1s addressed in the direction of stff ODEs.
Adesanya et al. (2013) implemented a new hybrid block
method for the solution of general third order initial value
problems of ODEs with fixed step size method. You and
Chen (2013) compare a two-stage explicit RKT Method of
fourth order and a three-stage explicit method of fifth
order together with an implicit RKT Methods are
considered as well. Awoyemi et al. (2014) constructed a
five step P-Stable Method for the numencal integration
of third order ODEs using fixed step size approach.
Zumr and Kuboye developed an accurate immplicit
block method for integrating third order ODEs via
mterpolation and collocation of power series approximate
solution.

Definition 1: According to Alkinfenwa ef al (2013),
a Block by Block Method is a method for computing
vectors Y;, Y,, ... in sequence. Let the r-vector (r is the
number of points within the block) Y, F, and G, forn=mr,
m=0,1,.. begivenas Y, = (Ypu1, ..., Vaur) > then the I-block
r-point methods for (Eq. 1) are given by:

Y, = Zj . AVY_ +th ) 1B@Fer

where, A, BY, 1 =0, .., j are r by r matrices as introduced
by Fatunla (1990). Thus, from the above definition,
a block method has the advantage that in each
application, the solution is approximated at more than
one point simultaneously. The number of pomts
depends structure of the block method.
Therefore, applying these methods can give quicker

on the
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and faster solutions to the problem which can be
managed to produce a desired accuracy (Majid and
Suleiman, 2007; Mehrkanoon et ¢i., 2010). The main aim of
this study is to propose an Implicit Block Multi-step
Method for solving directly (Eq. 1) adopting variable
step size approach on non-stiff ODEs. This approach
like

desigming a suitable step size/changing the step size,

possess  some  computational — advantages
stating the stopping criteria (prescribed tolerance level)
and error control/mmimization and help addressed the
shortcomings stated above.

The block algorithm proposed i this study is
based on interpolation and collocation. The continuous
representation of the algorithm generates a main discrete
collocation method to render the approximate solution Y,,,;
to the solution of (Eq. 1) at points x,,, i =1, ..., k as

discussed by Akinfenwa et al. (2013).
MATERIALS AND METHODS

Derivation of the method: Following, Akinfenwa ef al.
(2013) m this study, the aim 1s to derive the principal block
method of the form (Eq. 2). We move forward by secking
an approximation of the exact solution y(x) by assuming
a continuous solution Y(x) of the form:

q+k-1

Y(x) = Y mo(x) (3)

such that xe[a, b], m, are unknown coefficients and 8, (x)
are polynomial basis functions of degree qt+k-1 where ¢ is
the number of interpolation point and the collocation
points k are respectively chosen to satisfy q = 723 and
k>1. The mteger jz1 denotes the step mumber of the
method. We thus construct a j-step block method with
B, (x) = (xx,/h) by imposing the following conditions:

. N
Em,[“lj im0 @
1=10 h
q XX 1-3 5

Emz(i-l)(i-m[ﬂ “fiez O

1=10

where, v, is he approximation for the exact solution
Vi) T = 1000 Vau)s 018 the grid index and x,; = x,+Hh.
Tt should be noted that (Eq. 4 and 5) leads to a system of
qt1 equations of the AX = U where:
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X X X X, X
X:rl -Xll'rl Xi—l _Xirl erl
A= Xi—k Xi’lrk szl,k Xi,k X
kik-1)(k- Z)Xj B 1((1(—1)(1(-2))(;1 B 6
0 0 k(lk-1)(k- 2)}(n+1 k(lk-1)k- 2)Xn+1 )
0 0 0 k(k-D(k- 2)}(n+k k(k-1)(k- 2)Xn+k

- [XD= X1= X2> X3= s Xk]T
S PTTI P §

> tn-kds Tnd4lr tntls o

U=[f, 6 ...

Solving Eq. 6 using Mathematica, we get the

coefficients of m; and substituting the values of m; into

Eq. 4 and after some algebraic computation, the implicit
block multistep methoed 1s obtain as:

X a0 AR LA D)

where, « and [P ,are continuous coefficients.
Differentiating Eq. 7 once and twice, we have a block of
first and second order derivatives which can be used to
determine the derivative term in the initial value problem

(Eq. 1) as presented by Ehigie et af. (2011):

zy,ﬂ,ﬁz_u oy, 0 T B+ 2B
(8)
DI TR Y1

@)

k
2yn+,——

i=1

= nalyn-1+

Investigation of some theoretical properties

Order of accuracy: Adopting Lambert (1977),
Akinfenwa et al. (2013) and Awoyemi et al. (2014), we
define the associated linear multi-step method (Eq. 7) and
the difference operator as:

L[y(x), h] = z]j[ai y(x+i)+ bRy x+iy | (10)

1=0

Assuming that y(x) is sufficiently and continuously
differentiable on an interval [a, b] and that y(x) has as
many higher derivatives as needed then, we write the
terms in Eq. 10 as a Taylor series expression of y(x,.,) and

f(Xmi) Eym (Xmi) as:

Y(Xnﬂ - 2(? ) (X Jand ym(XnH) = 2 (ih) OHI)(X )

k!
(11)
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2 fn+k= Yo Yoo -

> Ynm]T

Substituting Eq. 10 and 11 into Hq. 7 we obtain the
following expression:

he 2y ey +
(12)
Agreeing with Lambert (1977) and Alanfenwa et al.
(2013), we observed that the Implicit Block Multi-step
Method of Eq. 7 has orderp, ifc,,,p=0,1,2, . .,i=1,
2, ..., ] are given as follows:

yxyhl=cy(x)+ clhy(l) (+..+c¢

p+2

G, = O+, +o,+..+0
©, = oy + 200 +... + ko

c, = %(OthrOtl o+ ko HB B B B

= %(0{1 + 2%, +... ko )-

W(Bﬁ?‘}ﬁﬂ%ﬁ AkTRYL q=4,3,.

Thus, the method (Eq. 7) has order p>1 and error
constants given by the vector, c,,#0. Agreeing with
Lambert (1977), we say that the method (Eq. 2) has
order p 1if:

LIyGo: bl = O™, a3
C,=C,=..=C,=C,,, =C,,, =0,C,,, #0
Therefore, C,; 1is the error constant and

C,.h*"y*"¥(x,) is the principal local truncation error at the
point x,. Since, this definition stated above is true for first
and second order ODEs according to Lambert (1977) then
1t 18 true for lugher order ODEs.

Stability analysis: In order to analyze the method for
stability (Eq. 7) 1s normalize and written as a block method
given by the matrix finite difference equations as by
Akinfenwa et al. (2013):
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A(D)Ym — A(l)Ym_1+h3(B(D)Fm+B(1)Fm_1) (14)
Where:
7Yn+1 1 7Yn-r+1 1 | n+l | | n-r+1 1
yn+1 ynrr+2 n+l f‘nrr+2
Ym - B Ymrl = B 1:m = B Fmrl =
_yn +r _| _yn i _fn+r . _fn .

The matrices A®, A%, B”, B are r by r matrices with
real entries while Y, Y, ,, F., F.., are r-vectors specified
above.

Following Lambert (1977), we adopted the boundary
locus method to determine the region of absolute stability
of the block method and to obtain the roots of absolute
stability. Substituting the test equation y' = -iy and
h =10 mto the block (Eq. 14) to obtain:

p(r) = det [r(A(” + BOhA7)-(A® BUR )] —g (15

Substituting h = 0 mm Eq. 15, we obtain all the roots of
the derived equation to be equal to be less than or equal
to 1. Hence, according to Lambert (1977), the block
method 1s absolutely stable. Thus as seen by Lambert
(1977), the boundary of the region of absolute stability
can be obtained by substituting Eq. 7 into:

i - PO

G(r)

(16)

and let 1 = e° = cosB+isin® then after simplification
together with evaluating Eg. 16 within [0°, 180°].
Therefore, the boundary of the region of absolute stability
lies on the real axis (Fig. 1).

Implementation of the method: Adopting Lambert (1977),
since this 13 implemented m the P(EC)" mode then it
becomes beneficial if the predictor and the corrector are
individually of the same order and this prerequisite makes
it essential for the stepnumber of the predictor to be
greater than that of the comrector. Subsequently, the
mode P(ECY* can be formally determined as follows
form=1,2, ..:

1-1 1-1
PEC)™ ¥+ Y o'y =0 Vel £ =f(x L v,
1=10 1=10
i-1 j-1
v+ Y oyl = WBEL 40’y B s =0, ., mA
i=0 i=1
(17
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Fig. 1: Showing the region of absolute stability of the
Implicit Block Multi-step Method if the root of the
stability polynomial is less than or equal to one for
non-stiff problems

Note that as m-o, the consequence of calculating
with the above mode will tend to those given by the mode
of correcting to convergence.

Moreover, predictor-corrector pair based on Eq. 1 can
be applied. The mode P(EC)™ specified by Eq. 17 where b’
15 the step size. Since, the predictor and corrector both
have the same order p, Milne’s device is relevant.

According to Lambert (1977), Milne’s device
proposes that it possible to estimate the principal local
truncation error of the predictor-corrector method without
estimating higher derivatives of y(x). Assume that p = p*
where p* and p represents the order of the predictor and
corrector method with the same order. Now for a method
of order p, the principal local truncation errors can be
written as:

(18)

C;+3hp+3y(p+3)(xn) - Y(Xnﬂ)-w +0

n+j

)

)-cnﬂ + o(hp”)

Also:

Cp+3hp+3y(p+3) (Xn) — y(X (19

n+]

where, W_,, and C,,; are called the predicted and corrected
approximations given by method of order p while C",,, and
C,; are independent of h.

Neglecting terms of degree pt3 and above, it is easy
to make estimates of the principal local truncation error of

the method as:

C
C, . h° +3y(p +3) (Xn ) et i (20)

W, -C
C Cp +3 ‘ "

n+j
p+3
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Noting the fact that C.#2C. and W_#C,,.
Moreover, the estimate of the principal local truncation
error (Eq. 17) 1s used to decide whether to accept the
results of the current step or to redo the step with a
smaller step size. The step is accepted based on a test as
described by Eq. 17 as in Uri and Linda. Hquation 17 is the
convergence test otherwise called Milne’s estimate for
correcting to convergence. Furthermore, equation 17
guarantees the convergence criterion of the method
during the test evaluation.

RESULTS AND DISCUSSION

Numerical experiments: The performance of the Implicit
Block Multi-step Method was carried out on non-stiff
problem as discussed below.

Experiment 1: The first experiment to be discussed is
given in Majid which was extracted from Awoyemi (2003).
Moreover, Awoyemi (2003) developed a P-Stable Linear
Multi-step Method for solving non-stiff third order
ODEs using fixed step size. On the other hand, Majid
constructed a two-point four step block method for
solving stiff third order ODEs applying variable step size
method. In addition, the newly proposed implicit block
method is designed to evaluate non-stiff third order
ODEs employing variable step size technique (Table 1).
The problem is given as follows:

V'OO+HAY (X)) =Xy =y(0)=0,y(0)=1L0=x=<b

with theoretical solution:
y(x)= i(1-co:32x) + le
16 8

Experiment 2: Secondly, experiment 5.2 is given by
Olabode and Yusuph (2009) and later, Awoyemi et al.
(2014). Olabode and Yusuph (2009) implemented
experiment 2 on a new block methed for special third order
ODEs using fixed step size. While, Awoyemi et al. (2014)
applied experiment 2 on five-step P-stable method for the
numerical mtegration of third order ODEEs using the same
fixed step size approach. Moreover, the newly proposed
Implicit Block Multi-step Method 15 formulated to
compute non-stiff third order ODEs employing variable
step size techmque (Table 2). The experiment is given as
follows:

Y+ YyE) =0, v0)=1,y(0)=-L,y (0=, 0<x<]
with theoretical solution:

y(x) = ¢
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Table 1: Numerical results by Majid and NPM for solving problem 1

B MAXE Maijid TOL MAXE NPM
5.0 4.66 (-T) 10°¢ 2.10218 (-7T)
10.0 4.66 (-T) 107 -

15.0 4.66 (-T) 107

20.0 4.66 (-T) 107 -

5.0 9.14(-8) 1072 4.215148 (-8)
10.0 243 (-8) 1072 -

15.0 2.63(-8) 1072

20.0 2.63 (-8) 10°% -

5.0 1.53 (-10) 1071 6.6431 (-11)
10.0 1.53 (-10) 1071 -

15.0 1.54 (-10) 1071

20.0 1.29 (-9) 1071

Table 2: Numerical results by Olabode and Yusuph (2009) and
Awovemni ef al. (2014) compared with NMP for solving

problem 2
MAXE

MAXE (Olabode and (Awaoyemi et af.,
Yusuph, 2009) 2014) PTOL MAXE NMP
1.36929 (-9) 2.1760(-12) 10710 2.64623 (-11)
3.12273 (-8) 1.3935(-11) - 6.80603 (-11)
1.2769%4 (-7) 3.4443 (-11) 1.06455 (-10)
3.25196 (-7) 6.4477 (-11) -
6.54730 (-7) 1.0316 (-10)
1.44406 (-6) 1.4979 (-10)
1.81781 (-6) 2.0486 (-10)
2.69774 (-6) 2.6756 (-10)
3.80241 (-6) 6.9382 (-10)
5.14755 (-6) 1.4224 (-10) - -
- - 10712 1.03326 (-11)

3.24585 (-11)
1.90709 (-10)

Table 3: Numerical results of NPM at different prescribed tolerance levels of
it’s implementation for solving problem 3

PTOL MAXE NPM
1072 5.15404 (-8)
- 1.88106 (-8)
- 2.4276 (-T)
10710 9.00765 (-11)
- 1.88106 (-10)
- 2.04415 (-10)

1.55431 (-14)

10712
- 5.10703 (-14)
2.70006 (-13)

Experiment 3 biomass transfer: Experiment 3 is extracted
from www.math.edu/--gustafso/2250systems-de.pdf and
solutions are provided using first order method for
solving ODEs analytically. The newly proposed method
transform the first order systems of fust order ODEs
into third order ODEs before they were successfully
implemented using variable step size technique (Table 3).
The experiment 3 is given as follows:

w(x) = Biomass decayed mto humus
v(x) = Biomass of dead trees

7(x) = Biomass of living trees

x = Time in decades (decade = n years)
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A typical biological model is:

W'(x) = -w(x) + 3y(x),
V() = -3y(x)+52(x), 2'(x) = -52(x)

The method of in

converting the above stated systems of first order ODEs
into third order ODEs. The conversion is expressed below:

substitution is employed

W)+ OW'(x)+ 23W O+ 15wi(x) = 0,
wi(0) = W(0) =0, W"(0)=1

with theoretical solution:

wix)="

CONCLUSION

Mayjid constructed two-pomt four step block method
for solving directly general third order ODEs. The scheme
which is specifically designed to solve stiff ODEs but
rather, solved problems were based on non-stiff ODEs
extracted by Awoyemi (2003). However, the newly
proposed implicit block multistep method 1s developed to
solve directly general third order ODEs with particular
interest on non-stiff problems. Hence, in comparison with
the maximum errors at all tolerance levels of 107, 107* and
107", the newly proposed method performs better than
Mayjid.

The results by Olabode and Yusuph (2009) as well as
the newly proposed method. Olabode and Yusuph (2009)
design a method which examines special third order
ODEs using fixed step size while Awoyemi et al. (2014)
constructed a five step P-Stable Method to numerically
integrate third order ODEs applying fixed step size.
Nevertheless, both results cannot be compared with the
newly proposed method which is implemented employing
variable step size technique. Moreover, comparing the
results of both maximum errors with the newly proposed
method, the newly proposed method is more efficient and
perform better at all prescribed tolerance levels of 107"
and 107",

The prescribed tolerance levels of 107°, 107", 107"
and maximum error results. This shows that the newly
proposed method which is specifically designed for
non-stiff ODEs has shown to be more efficient and reliable
employing variable step size technique in solving real life
problem.
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RECOMMENDATION

The Tmplicit Block Multi-step Method is executed on
windows operating system and written in Mathematica

language.
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NOMENCLATURE

TOL: Tolerance Level

PTOL: Prescribed Tolerance Level

MAXE NPM: Magmitude of the Maximum Errors of
the Newly Proposed Method

MAXE: Magnitude of the Maximum FErrors by
Olabode and Yusuph (2009)

MAXE: Magnitude of the Maximum Errors of Majid
MAXE: Magnitude of the Maximum FErrors by
Awoyemi et al. (2014)
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