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Abstract: The present study seeks to investigate the multi-commodity multi-source-sink network flow
interdiction problem with several interdictors. A network user and interdictors are considered as two main
problematic elements in this study. While the network user aims to maximize total flow from several sources to
several sinks, the mterdictors try to reduce the network user’s maximum flow by blocking the arcs of the
network. Arc blocking leads to some cost and there 15 limited resource for the required interdiction. To solve
the problem, first, the user and nterdictors problems were defined.
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INTRODUCTION

the

network  flow

The present study seeks to mvestigate
multi-commodity  multi-source-sink
mterdiction problem with several interdictors. This study
deals with two adverse elements: a network user/defender
The
attempts to maximize the multi-commodity output flow
coming from a number of sources which are a subset of a
node set V in a directed network. The interdictors try to
reduce the network user’s maximum flow through the
limited interdiction resource in order to block the arcs of
the network.

Cormican et al (1998) formulated and sclved a
stochastic version of the interdictor’s problem. They
mimimized the expected maximum flow gomng through the
network with interdiction variables being bmary and
random. Extensions were also made to handle uncertain
arc capacities. Such stochastic mteger programming
problems can be used to interdict illegal drugs and to
reduce the effectiveness of moving materials, troops,
information, etc., in a military force, through a networl in
wartime.

Wollmer (1970) presented two algorithms for
targeting strikes in a Lines-of-Communication (L.OC)

and multi-interdictors/attackers. network  user

network. The LOCs were represented by a network of
nodes and directed arcs. It was assumed that the user of
the LOCs 1s attempting to achieve a circulation flow at a
minimum cost. A very general goal was as special cases,

maximizing the flow between two points, meeting the
required flows between a source and a sink at a minimum
cost and combinations of these two.

Almost, all studies prior to Wood (1993) are specific
to the applications stated above and are not extendible to
more general contexts. Wood was the first to adopt a
mathematical programming model to solve the problem.
He developed a min-max formulation of MEFNIP and then
converted it to an Integer-Programming Model.

Another category of the network-interdiction problem
1s that of maximizing the length of the shortest path where
a set of network arcs are disabled mn order to maximize the
length of the shortest path between s and t through the
usable portion of the network. Fulkerson and Harding
(1977) have notably contributed to resolving this problem.

MULTI-COMMODITY MULTIPLE SOURCE-SINKS
NETWORK INTERDICTION PROBLEM

Multi-commedity multiple source-sinks network
interdiction problem is defined on the basis of capacitated
and directed network, G{V, L) with node set V and arc set
L consisting of ordered pairs of distinct nodes. Flow on
each edge (1, J) canmove from 1 to j. The total flow of each
arc (i, j) is restricted by a positive integral capacity m;, for
the eth commodity.

The sets of sources and sinks are represented by
N=in,n, ..,n}and D= {d, d, ..., d.}. respectively.
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Each source provides the flow for several sinks. The
set of sinks that are fed up by a certain source n; is
denoted by D, 1.e, D, = {d/deD and d,is a sink for n}.
The sets D, 1 =1, ..., n may have several joint nods. The
set of middle nodes (which are neither a source nor a sink)
is shown by VP = V/(NUD). In this model, it has been
assumed that sinks may not be middle nodes in another
path.

Ditto,
multi-commodity total flow through network having
several sinks and sources but on the other hand an

the network user aims to maximize

mnterdictor aims to mimmize the maximum flow aclievable
by the network user via arc blocking or arc destruction.
We assume that the interdictor uses a single type of
mnterdiction resource with a total amount of C umits.
Interdicting an arc (1, J)€L requires ¢,>0 units of the
resource C.

The main problem of multi-commodity multiple
source-sinks network interdiction problem consists a
network user and an interdictor. The user-interdictor or
leader-follower relationship is similar to the one in a static
Stackelberg game (Simaan and Cruz Ir., 1973) with the
difference being that a more general Stackelberg game
continues n alternating plays between the leader and the
follower. Such, a game can be expressed mathematically as
a bi-level programming problem (Dempe, 2002). Tn the
aforesaid method, this problem is designed and analyzed
as a bi-level min-max program. Later, it will be converted
into a linear program. The problems of the user and the
interdictor will be formulated in the following subsections.
Let, x;;. be the amount of flow out of the source node k of
the eth commodity on arc (i, j). In this model, the
mterdictor’s decision variable w; 1s removal rate then
w,€[0, 1] and arc capacity will be m,(1-w,) for eth
commaodity.

Model 1:
E n
i 1
min max 22 X X D e )
e=1 k=1| j(, el JL el
ielN jeN
1EN 1N

s.t: ZXUkE <m, (1-w,) ¥, j)el,e=1..,E (2)
k=1

Y Xy ¥ Xy, =0 Vie VP k=1 ..ne=1.,E
1 el Jel
3
E[ E Xijke_ E X]1ke }_ 2 Xnk]ke: 0 (4)
€Dy | i, JEL it(j, i)l [E

k=1 ..,ne=1._E
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Y o, <

el

(5)

where, O<w;<1, W(i, )L, x>0, ¥{,j)€L, k = 1, K,
e=1, ..., E. The above model 1s bi-level model which each
level 1s solved with separate decision. In fact, the internal
model maximizes total output flow of all sources while on
the minimum model, interdictor mimmizesinternal problem
out-flow coming from all sources m N. Constramnts 2 set all
flows on are, ;, to zero when w; = 1 and at most to m,,

when w; = 0.
GENERALIZED PROBLEM

The networl user aims to maximize total flow through
network having several sinks and sources with multi-
commodity but on the other hand interdictors aim to
minimize the maximum flow aclievable by the network
user via arc blocking or arc destruction. We assume that
each mnterdictor uses a single type of interdiction resource
with a total amount of C, units. Interdicting an arc (1, J)€L
;20 units of the resource.

The interdictors’ decision variable, w;, takes on the

by rth mterdictor requires ¢

value of 1 if arc (4, j) is interdicted by the rth interdictor
and 0 otherwise. Now, network user’s multi-source-sink

maximum flow interdiction problem with several
interdictors is formulated as following:
Model 2:
) E n 6
n’gn max EE E Xl_]kE- E XIJkE ( )
e=lk=1| ;{ el I el
1EN EN
jgN igN
n R
s.t: Exukg <mu{l-2wurj V(i,j)eL,e=1,..,E
k=1 r=1
(7
Y X ¥ Xy =0 Vie VP,
i, el i, el (8)
k=1,...,n,e=1,...E
2[ D X D X J‘ > X = U )
jeDy b il {)el i:(j, el (ny,i)eL
k=1,.,ne=1.._E
2 ew, L r1=L..R (10)

1=l
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R
Yw, sl  VijeLl (1)
r=1

where, O<w,<1, ¥ j)eL, r = 1, .., R %20, V(1 1)eL,
k=1, ..K e=1, .., E The above model mimmizes the
maximum flow achievable of all sources. For a fixed value
of W, mner maximization 1s aimed to maximize the user’s
tflow. In other words, the objective function mimmizes the
maximum out-flow coming from all sources m N. Note that,
each arc are interdicted by R interdictors and each
interdictor removes percentage of arc on network and arc
capacity will be constramns 7. These constramts 7 set all
flows onarc (1, j) to zero when sum of w;, be 1 and at most
to my, for eth commodity when ¥° w, =0 in otherwise
flow on arc (i, j) is bounded be up m;, 0-3"_ w,) . Also, on
mterdictors opinion, an arc will be deleted completely

then removal rate sum 1s <1 (constrain 11).
AN EQUIVALENT MODEL

The arcs and nodes of the network are divided
mto three groups including: S, includes all sources and
arcs that connect sources together, 3, all middle nodes
(no source and no sink) and edges comnecting middle
nodes together and to the sources and the sinks, 3,
mcludes all sinks and edges that cormect sinks together.
Three sets Sy, 3;, S; may be formulated as following:

S, = NU{G,{) G,)) Land i, je N}
S, = VPU{G, i) G )€ L and G, j)e 8, U8,)
S, = DU{G, 1) G, j)e Landi, je D}

Now, we can assume 5, as a pseudo-source and S, as
a pseudo-sink. The user tries to meaximize the network
flow value from S5,-5; and the mnterdictors try to decrease
this value as much as his accessible resource allows.
According to the new defimtion of source and sink, the
problem may be formulated as the following:

Model 3:

E
min max EVE (12)

e=1

n R
t.: qukg <mu{l-2wur) V(i,pel,e=1,.,E
k=1 r=1

(13)
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by

N Y k- Y x. -V, e-L.E 09

k=1| j:{i,i)elL i, el
125 15
1£ 5 1€5)]

R

el wthpel (15)
YieS, k=1,.,ne=1, .,E

1Jke X_]1ke B E Xnk]ks - (1 6)
(1 el 1], 1)EL (ny,, )€l

1 n,e=1,.,E

<

E gw, < r=1..,R

(i.el

E .
Yw, <1 ¥Epel
r=1

where, O<wy <1, Vi, )L, r = 1, ., R, x>0, V{1, j)EL,
k=1,.,K e=1, ..,E Wecall this form of the problem as
grouped multi-commodity multi-source-sinks mnterdiction
network flow problem with several interdictors. The
objective 12 minimizes the maximum of flow value from
S,-3;. Constraints 13 are the interdicting constraints on
arcs. Constraints 14 ensure that the total net flow exiting
from all sources (and reaching all sinks) is equal to V..
Constraints 16 enforce the sum of arrived flows to the
nodes of D, is equal to the output flow from the kth
source.

Owr method takes the dual of inner maximization
by temporarily fxing Wand then releasing W to obtain
a mixed linear “min-min” Model which 18 smnply a
minimization model.

Model 4:

E R
my 3 3 m 1S
o 8w -

e=1(j)eL

r=1

St 8,4, 20 Vi,j)e L, Vi, jes,e=1, .., E

a7

0L -0, 20 Vk=1,..,n, V(i j)eL, (18)
Vie 8, and je §,,e=1,..E

£+8,+ a1, 20 Vi,jel, (19)

Vie§ and je8,,e=1,..,E

R
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0,+f+7,20,vk=1,.,n
V(i,j)e L, vie 8, and je S,, e

(20
=1, ..

eiJE fe Yke 2 07 sz 1, Ly I

Y(i,j)el,Vie S; and je §,e=

(21
L.

81]5_0"11(5Jr Ve 20, V= 1,....1n,
V)L, Vies, mdje S, e—1, ...

(22)

el]E-YkE+ a]kg 2 O; Vk = 1, s I

Y(i,))e L, Vie s, and j€ S .

(23)
=1, ..

£, =1 . E
Y ew, <C r=1,..,R

Lpel

e=1

w. <1

i = v(i,j)e L
Vi, j)e L, r=
k=1 .,ne=1,
e=1..E
V(i,j)eL,e=1,.,E
ic VPandk=1, .. ne=1

1,..R

. L

E

5 e

The dual variables 6

ijes

above correspond to constra]nts 13-16, respectively.

& y.and ¥ in the model

Lemma 1: There 1s an optimal solution to model 4 such
that: -1 <0, <0, VieS, k=1, ... ne=1,..,Eand 0<8,,<1,
V(i pel,e=1, .., E -1<vy,<0, vk = 1, ,ne=1 .. E
Proof: Note that: the coefficients of 6, in the objective
function are positive, so that making each 0, as small as
the size permitted by the constraints decreases the value
of the objective function; no two variables o, and o,
with the same node index (i) and different source indices
(k and k') appear in the same constraint. Accordingly, the
restriction of a variable o, to the mnterval [-1, O] does not
affect any other oy, for ke,

Constraints 17 and 23 imply that the variable 6;, is
o4, .} The restriction of the
variables ¢, and v, to the interval [-1, O] wnplies that

bounded below by I?flgx{_%‘fﬁ’

the lower bound on 0. 1s at most 1.

e

Accordingly,
restricting 0, to the mterval [0, 1] for such ares mamtains
feasibility without loss of optimality. This completes the
proof.
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Lemma 2: If p, (1 B W, . E, then

e =1 Wi

0<P;.<1 and p,. 28, 5%, w, V(i j)cL, e =

ije

)8, ¥, j)el, e =
1, E.
Proof: Since, I, w,;<[0,1],1-Z%, w, 1s a value between 0
and 1. According to P,=(8,6,E% w,) and 0<B;.<1, we

e e ije=
have 0<P, <1 and B, z8,-E, w,. Now using P;_, Model 4

Wi

ijes

18 wriltten as:

Model 5:

E
Z 2 1’1’11] ep1] e

min

wO8we T eL

st eue-yke >0 V(i jle L, Vi, je S,e=1, . E

6, -0, Vk= 1.1 VG e L.Vie 8, and
i€s,e=1,..E

f+6,+0,7.20 Vi,jiel, ¥ie § andje §,,e= E

e

1.

B+ 7, 20 vk=1,...n, ¥{,je L, vic 8 and
jes,,e=1,..,E
8, -1, 20 Vk=1,..,n, V(i pel, vie 3, and
je§,e=1,..,E
0,0y, T 7, 20 vk=1,..n, ¥(i,jle L, Vi€ 8, and
je8,e=1,..,E
0,1, T 08y, 20 Vk=1,..,m, V(1,j)e L, Vi€ §, and
jes,,e=1 . E
-f =1 e=1,...E
2 G W ur < r=1,..,R
il
R
Yow, <1 v(i,j)e L
r=1
0=w, =1 (i, j)eL
R
P 20,->w,,  V@jeLe=1, . E
r=1
-1y, <0 k=1,.,n,e=1,..,E
f, free e=1,..E
0<8,, <1 Vi, jpel,e=1,..E
1oy, <0 ieS, andk=1,..ne=1,.,E
0<p, =1 Vi, jyel,e=1,..E
Lemma 3: The optimal value of p;, 1s 0,

Proof: If I.,w,=0 is optimal in Model 2, the
corresponding term in the objective function 1s equal to
m;0;. If 5% w,=1 is optimal, then the corresponding
term in objective function is 0. Thus, to linearize the
model, it must be true that p;, = 0 when I, w,=1
and  py, 0,, when ¥ ,w,=00 When I w,=1

ije
constraints py, 28, - wy, V(1 J)EL, e, ..., E are satisfied
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for 0=0,.<1. However, since setting p;, to any value >0
increases the objective function, the value of p;, must be
zero. When TP w, =0, constraints py, 28;-3r_ w,, V(1, ])€L,
e, ... B are satisfied for p,=0,,. However, due to the
minimization goal {,min_ 3E L D e My Py ) it must be true that
Pye = 05

COMPLEXITY

This study reveals that the above mentioned
problem 15 NP-Hard. This claim was proved by using
the equivalence of simple binary Knapsack and
multi-commodity multi-source-sinks interdicted problems
with several interdictors.

Binary knapsack problem: Consider a set of items, K with
each keK having a positive integer profit m', and a
positive integer weight ¢, and two positive integers
M and C'. Does there exist a subset K'cK such that
DpemieM and %, ¢',<C'? That 1s, does there exist a set
of items whose total profit is at least M' and whose total
weight is no more than C'?

Note that in the proposed algorithm, set S, is
considered to be a hypothetical source that mcludes
multi-sources and similarly set S, concludes all sinks.

Interdictor problem: Consider a directed graph G =(V, L)
with distinguished sets S, and S,, positive nteger
capacities m; for each arc (i, j)6L, positive integer resource
¢; required for the deletion of any arc (i, j)cL and two
positive integers M and C. Does there exist a subset of
arcs L'cL such that % ;. ¢;<C and the maximum 8,-5;
flow G-L' in is no more than M? In other word, does there
exist a subset of arcs whose deletion consumes no more
than C units of the resource and which leave behind a
network where the maximum S-S, flow does not exceed
M?

The knapsack problem was shown to be NP-Hard by
Guarey and Johnson (1979). Using this proof, Wood (1993)
showed that the mnterdictor problem with one source and
one sink is NP-Hard as well. In the following Theorem, we
show that the above problem is NP-Hard too.

Theorem 1: Multi-commodity multi-source-sink network
flow interdiction problem with several interdictors is
NP-Hard.

Proof: First, this problem 15 NP-Hard in state of one
commodity and one interdictor. Consider a knapsack
problem as above which is NP-Hard Now create a
directed network G = (V, L) with two sets of nodes
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in S, and S; and for each item keK in the knapsack
problem create an arc kel directed from S to T with
capacities m,, = m' ,, and resource requirement c,, = ¢'y,.

Furthermore, consider C = C' and M, = %, m, M.
Now, suppose there exists a subset K'cK such that
D My 2 M, and X, ¢!, <C',. Let, L' correspond to K'.
Then, because of the simple topology of the network,the
maximum flow in G-L' is at most M, = X, m,-M'. and
trivially X, ¢,<C". Conversely, suppose there exist a
set of arcs 1. in (3 such that the maximum S, and 3, flow in
G-L' is no more than M and %, ¢,<C". Then, if K' in the
Knapsack problem corresponds to L', it follows that
D My 2 By, my M, = M, and trivially %, ¢\, <C. Now
given the fact that the problem 1s clearly NP-HARD,
the new variable V, can be defined in the case of
multi-commodity (constraint 14) and on problem with
several mterdictors, linear mterdiction constraints are
added to model, then problem 1s NP-Hard.

CONCLUSION

Considering such problems, the general mathematical
model of the problem was developed Besides, the
model was transformed to a bi-level min-max program.
Afterwards, in order to be able to compute a solution, the
program was converted into a mixed-mteger linear
prograrm.
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