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Abstract: This study presents a novel Bacterial Foraging Algorithm (BFA) to tune optimal gamns of a
Proportional Integral Derivative (P1D) type multiple stabilizers for multi machine power system. The problem
of robustly tuning of PID based multiple stabilizer design is formulated, as an optimization problem according
to the time domain-based objective function which is solved by Bacterial Foraging Algorithm (BFA) that has
a strong ability to find the most optimistic results. To demonstrate the effectiveness and robustness of the
proposed stabilizers, the design process takes a wide range of operating conditions and system configuration
into account. The effectiveness of the proposed stabilizer is demonstrated through non-linear simulation
studies and performance indices on a 4 machine 2 area power system in comparison with the Conventional
Power System Stabilizers (CP3S) and Particle Swarm Optimization (PSO) based optimized PID type stabilizers
(PSOPSS). The results of these studies show that the proposed BFA based optimized PID type stabilizers have
an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic
stability of the power system for a wide range of operating conditions. The results obtained using the proposed
method 15 much superior than those obtained by CPSS and PSOPSS based tuned stabilizers m terms of
accuracy, convergence and computational effort.
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INTRODUCTION

Power systems are highly non-linear and exhibit low
frequency oscillations due to poor damping caused by the
high-gain, fast-acting Automatic Voltage Regulator
(AVR) emploved in the excitation system. The power
system utilities employ Power System Stabilizers
(PSSs) to mtroduce supplementary stabilizing signals
mnto the excitation system to increase the damping of the
low frequency oscillations. Among various types of
PSSs, the fixed-structure lag-lead type (CPSS) is
preferred by the utilities due to its operational simplicity
and ease of tuming PSS parameters. However, the
robustness of these PSS under changing conditions 1s a
major concern. The concept of PS5Ss and their tuning
procedures were well explained in literature. A well-tuned
lag-lead type Conventional PSS can effectively improve
dynamic stability. Many approaches have been
proposed to tune PSSs, such as the sensitivity approach
(Fleming et al, 1981), pole placement technique
(Abido and Abdel-Magid, 2002) and the damping
torque approach (Kundur et al, 1989). Global
optimization technique like Genetic Algorithm (GA)
(Abdel-Magid et al., 1999), Particle Swarm Optimization

(P30O) (Abido and Abdel-Magid, 2002), tabu search
(Rafiee and Meyabadi, 2012) and simulated annealing
(SA) (Abido, 2000) are attracting the attention in the field
of PSS parameter optimization in recent times. But when
the system has a lghly epistatic objective function (ie,,
where the parameters being optimized are highly
correlated) and number of parameters to be optimized
are large, GA has been reported to exhibit degraded
efficiency (Hameed and Palani, 2013a). Bacterial foraging
algorithm has been proposed and introduced as a new
evolutionary technique by Passino (2002) and Hameed
and Palani (2013b). To overcome the drawbacks of
conventional methods for PSS design, a new optimization
scheme known as Bacterial Foraging (BF) is used for the
PSS parameter design (Hameed and Palani, 2013a). This
algorithm (BFA) appeared, as a promising one for
handling the optimization problems (Passino, 2002). It 1s
a computational mtelligence based techmque that i3 not
largely affected by the size and non-linearity of the
problem and can converge to the optimal solution in many
cases where many analytical methods fail to converge.
Considering the strength of this algorithm, it 1s employed
in the present reseach for the optimal tuning the
parameters of the PSS,
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In this study, a new/improved BFA-based optimal
determination of PID-PSS parameters is preserted which
overcomes the shortcomings of previcus research. In
order to design, a robust PSS which guarantees stability
of system in a wide range of operating conditions, the
objective function 1s defined such that the resultant time
response 18 restricted to lie within specific bounds, as well
as limiting the amount of overshooting of power system
response subjected dishwrbances.  The
performance of the BFAPSS is compared with those
obtained with other techmques, such as conventional and
Particle Swarm Optimization (PSO) by plotting the time
response curves for the faults.

when to

MATERIALS AND METHODS

Power system model studied: A 4 machine, 2 area study
system, shown m Fig. 1 18 considered for the damping
controller design. Each area consists of 2 generator units.
The rating of each generator is 900 MVA and 20 kV. Each
of the units is connected through transformers to the
230 kV transmussion line. There 1s a power transfer of
400 MW from area 1-2. The detailed bus data, line data
and the dynamic characteristics for the machines, exciters
and loads are given by Shayeghi ef al. (2011). The loads
are modeled, as constant impedances. For the power
systemm  stability analysis reasonably
mathematical model which takes
non-linear ties in the system is highly essential. The

a accurate

into account the

two-axis model (fourth order) given by Hameed and
Palani, 2013a 1s used for the time domaim simulations
study for each machine. The loads are modeled as
constant impedances. A first order model of a static type
automatic voltage regulator is used. Non-linear dynamic
equations of the each machine can be summarized as
follows:
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Fig. 1: Single line diagram of 2 area system
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PSS structure: The operating function of a PTID type PSS
1s to produce a proper torque on the rotor of the machine
involved 1n such a way that the phase lag between the
exciter mput and the machine electrical torque 1s
compensated. The supplementary stabilizing signal
considered 1s one proportional to speed. A widely used
speed based PID 1s considered throughout the study
(Hameed and Palani, 2013a). The transfer function of the
ith PID type stabilizer is given by:

= T8 .[KPE+ Kps jAwl (s) (6)
1+T,s s 1+T.s
Where:
TD<«1 = Itis considered as KD/100
Ay = The speed deviation of the ith generator
[0 = The output signal fed, as a supplementary
input signal to the regulator of the excitation

system

This type of PSS consists of a washout filter and a
PID compensator. The washout filter which really is a high
pass filter 1s regarded, as to reset the steady-state
offset n the output of the stabilizer. The value of the
time constant T,, 13 usually not critical and 1t can range
from 1-20 sec.

This study attempts to optimize the parameters (Kp,
K1, Kd) of PID-PSS via a Bacterial foraging algorithm is
ingpired by an activity called chemotaxis exhibited by
bacterial foraging behaviours.

Particle Swarm Optimization (PSO): Particle Swarm
Optimization (PSO) is a population based stochastic
optimization technique developed by Eberhart and
Kennedy (Soliman ef al., 2008). It shares many similarities
with evolutionary computation techmques, such as
Genetic Algorithms (GA). The system is initialized with a
population of random particles where each particle is a
candidate solution. The particles fly through the problem
space by following the current optimum particles and
searches for optima by updating their positions. However,
unlike GA, PSO has no evolution operators, such as
crossover and mutation. The advantages of PSO over GA
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are the ease of programming and fast convergence (Fogel,
1995; Seifossadat et al., 2007). In the PSO algorithm, each
particle updates its velocity and position by the following
relationships:

e+l

vt = wVF 4 ¢ rand, (pbest1 —sF ) +

' (7)
c,rand, (gbesti - si‘)
S (2)
Where:
¢; and ¢, = The cognition and social parameters

The constant numbers in the range
of Kundur et al. (1989)

= The inertia weight

V., The velocity of the ith particle

8 Its position

pbest; and gbest; = Local best and global best positions

rand, and rand,

The velocity of particle in Eq. 7 depends on its
previous velocity, its own thinking and social
psychological adaptation of the population. The PSO
algorithm starts with random initialization of population
and velocity. The search for the optimum solution is
continued unless one of the stopping criteria 1s reached.
The stopping criteria are either the maximum iterations
are reached or there is no further improvement in the
optimal solution. The values of parameters for PSO used
n this study are as follows:

No. of particles 30, No. of swarms 12 (Kp, Ki,
Kd); No. of iteration = 500; Maximum particle velocity
(upper-lower bound)/No. iteration = 0.05; cl, ¢2 =2, 2;
wmax, wmin = 0.9, 0.4.

Bacterial Foraging Algortihm (BFA): Bacterial foraging
algorithm (Passino, 2002, Shayeghi et al., 2011) is inspired
by an activity called chemotaxis exhibited by bacterial
foraging behaviours. Motile bacteria such as Z. coli and
salmonella propel themselves by rotation of the flagella.
To move forward, the flagella rotates counter clockwise
and the organism swims or runs while a clockwise rotation
of the flagellum causes the bacterium to randomly tumble
itself in a new direction and swim again alternation
between swim and tumble enables the bacterium to search
for nutrients in random directions. Swimming 1s more
frequent as the bacterium approaches a nutrient gradient.
Tumbling, hence direction changes is more frequent as
the bacterium moves away from some food to search for
more. Basically, bacterial chemotaxis 1s a complex
combination of swimming and tumbling that keeps
bacteria in places of higher concentrations of
nutrients. The foraging strategy of Escherichia coli
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bacteria present in human intestine can be explained
by 3 processes, namely chemotaxis, reproduction and
elimmation dispersal.

In chemotaxis, a umt walk with random direction
represents a tumble and a unit walk with the same
direction in the last step indicates a run. C (1) 1s called the
run length unit parameter is the chemo tactic step size
during each run or tumble. With the activity of run or
tumble at each step of the chemotaxis process, a step
fitness will be evaluated. In the reproduction step, all
bacteria are stored in reverse order according to the health
status. Here, only the 1st half of the population swrvives
and a swviving bacterium splits into 2 identical ones
which are then placed in the same locations. Thus, the
population of bacteria keeps constant. Tt is possible that
in the local environment, the hife of a population of
bacteria changes either gradually by consumption of
nutrients or suddenly due to some other influence. Events
can kill or disperse all the bacteria in a region. They have
the effect of possibly destroying the chemotactic
progress but in contrast, they also assist it, since
dispersal may place bacteria near good food sources.
Elimination and dispersal helps in reducing the behavior
of stagnation (i.e., being trapped in a premature solution
point or local optima). The flow chart of the iterative
algorithm 1s shown in Fig. 2. The bacteria with large run
length unit C (i) have the exploring ability and stay for a
while in several domains contaiming local optima. It can
also escape from the local optima to enter the domain with
global optima. On the other hand, a bacterium with small
run length unit C (i) is attracted in to the domain with local
optima and exploited this local minimum for its whole life

Initialization
of variables

Cost function,
J (i, j) Evaluator
J=Jtal)

—
Elimination and dispersal
loop counter, 1= 1+1
Y Yes

Reproduction loop
counter, k = k+1

No

Yes

Chemotactic loop
D

Fig. 2: Flow chart of bacterial foraging algorithm



J. Eng. Applied Sci., 9 (6): 217-223, 2014

cycle. Tt is therefore necessary to choose the value of
C (i) with larger value for faster convergence. In this
algorithm, cost function value 1s taken as objective
function and the bacterium having mmimum cost
Function (F) is retained for the next generation. For
swarming, the distances of all the bacteria in a new
chemotactic stage are evaluated from the global optimum
bacterium till that point. To speed up the convergence, a
simple heuristic rule to update one of the Coefficients (C)
of BFA algorithm is formulated.

BFA based PSS: This study describes how the BFA
algorithm is employed to tune the PID type PSS
parameters for the 2 area multi-machine power system
which is shown in Fig. 1. Just like any other optimization
problem, an objective function (performance index) needs
to be formulated to determine optimal parameters of
multiple PSSs. The optimal values of these parameters
depend upon the cost function used for optimization.
Each individual in the initial harmony has an associated
Performance Index (PI) value. The performance indices
(Shayeghi ef af., 2011) used here are of the following form:
The Integral of the Square of the Error criterion (ISE)
which 1s given by:

ISE=10"%[ " (Aed + Aol + Ao +Ael) ()

The Tntegral of Time-multiplied Absolute value of
the Emor criterion (ITAE). The criterion penalizes
long-duration transients and is much more selective than
the ISE. A system designed by use of this criterion
exhibits small overshoot and well damped oscillations. It
is given by:

ITAE =10' [ {|Awy, |+ [Aey|+ [0, +|Aa,]) (1O

TAE integrates the absolute error over time. Tt does
not add weight to any of the errors in a systems response.
Tt tends to produce slower response than ISE optimal
systems but usually with less sustained oscillations. Tt is

given by:

Table 1: Operating conditions

Conditions OP1 0P2 OP3
P1 0.7778 0.5556 0.9911
Q1 0.2056 0.2056 0.1722
P2 -0.1084 0.5556 0.6283
Q2 0.8020 0.2611 0.5836
P3 0.8883 0.5556 1.1110
Q3 0.2244 0.2244 0.2222
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tsitm

IAE = 10° [ (A, |+ Ao, | + [a0, [ +[aa,[) (D)

1

—_ (12)
(1+ Aop)+(1+1s)

Where, cwp and ts are mean overshoot, mean
settling time of 4 relative speed deviations. The optimal
tuning of the PSS parameters carried out by
evaluating the fitness Functions (F), as given in Eq. 9-12
for the operating conditions as given in Table 1. A 6-cycle
3 phase fault is applied at the middle of one of the
transinission line between bus-7 and 8. The fault 15 cleared
by permanent tripping of the faulted line. In this study,
the BFA module works offline. For each PSS, the optimal
setting of 4 parameters is determined by the BFA, i.e, 12
parameters are to be optimized.

18

RESULTS AND DISCUSSION

The effectiveness and robustness of the performance
of the proposed PID type stabilizer under transient
conditions 1s verified by applying a 3 phase fault of
100 ms duration at the middle of one of the transmission
lines between bus-7 and 8. The fault is cleared by
permanent trippmg of the faulted line. To evaluate the
performance of the proposed stabilizer design approach
the response of the proposed PSS are compared with the
response of the PSO and CPSS. The inter-area and local
mode of oscillations with the above stabilizers for
different operating conditions (Moradi ef al., 2012) as
given in Table 1 is shown in Fig. 3-5, respectively. The
performance of the BFA based optimized multiple PID
type stabilizer 1s quite promment in comparison with the
other P3Ss and the overshoots and settling tune are
significantly improved with the proposed stabilizer.
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Fig. 3: Convergence comparison between PSO and BFA
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Fig. 4: Inter-area and local mode oscillations for operating condition 1
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Fig. 5: Inter-area and local mode oscillations for operating condition 2

Table 2: Performance indices under different operating conditions

Algorithm  OP1 (ITAE) OP2 (IAE) OP3 (IAE)

BFA 16.533 12432 1.2532
26.432 25.561 2.3459
16437 16.855 1.5671

PSO 20,562 11.349 2.2098
22,560 9439 3.4633
17.674 10.354 1.7733

Figure 3 illustrates the convergence of the objective

Function (F) with Particle Swarm Optimization (PSO) and

BFA. From the convergence characteristics, it is clear
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that BFA offers superior performance than PSO. From
Fig. 4-6 and Table 2-4, it is observed that the performance
of the PSS designed using BFA is far superior compared
to the PSS designed using Particle Swarm Optimization
(P30O). In addition, Table 2-4 reveals that by using the
proposed BFA technique, the speed deviations of all the
machines are greatly reduced has small overshoot and
settling tume.

It 18 merit mentioning that the lower the value of
these indices is the better the system response in terms of
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Fig. 6: Inter-area and local mode oscillations for operating condition 3

Table 3: Optimal parameters of PID PS8 under different operating conditions

Table 4: Settling time (ts) maximum peak overshoots (wp) comparison

Operating conditions BFAPSS PSOPSS
OP1 Kpl =56.7231 Kpl =43.49898
Kp2 =70.5697 Kp2 =85.88287
Kp3 =69.9105 Kp3 =52.27263
Kp4 = 59.9096 Kpd =49.85963
Kil =27.9889 Kil = 71.75443
Ki2=28.0689 Ki2 = 36.08533
Ki3=15.6781 Ki3 = 9.040921
Kid =34.4917 Kid = 67.06363
Kdl =45.7238 Kdl =133.8218
Kd2=34.4192 Kd2=114.9234
Kd3 =56.5521 Kd3=23.37183
Kdd =46.525 Kdd=9252788
op2 Kpl =43.39446 Kpl =120.7615
Kp2 =29.55834 Kp2=27.80057
Kp3 =104.323 Kp3=15.54715
Kp4 =28.36145 Kp4 =96.80758
Kil = 79.63496 Kil = 75.88975
Ki2=7.396793 Ki2 = 44.43751
Ki3=15.6781 Ki3=64.1663
Kid = 5.43875 Kdd=92.11856
Kdl =125.742 Kd1l =114.7058
Kd2=57.1332 Kd2=73.028
Kd3 =35.91021 Kd3 =96.2953
Kdd=29.71308 Kdd =44.36207
OP3 Kpl =120.7615 Kpl =43.43277

Kp2 =27.80057
Kp3 =104.3237
Kp4 =96.8075
Kil =75.88975
Ki2=44.43751
Ki3 = 64.1663
Ki4 = 44.36207

Kp2=29.55834
Kp3 =99.83914
Kp4=25.71863
Kil = 79.18229
Ki2 = 23.77429
Ki3 = 5.636135
Kid = 5.363027

Kdl =114.7058 Kdl =128.8646
Kd2=73.028 Kd2=57.63613
Kd3 =96.2983 Kd3 =37.50805
Kd4=92.11856 Kd4=30.03774

the time-domain characteristics. Numerical results of
performance robustness for all system loading cases are
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PSOPSS BFAPSS

Operating

conditions Generator ts (sec) wp ts (sec) wp

OP1 Gl 8.4 1.0027=107* 2.7 1.0036x107*
G2 11.3 1.0026x107* 9.5  1.0020x107*
G3 6.3 1.0027=107* 12.5  1.0020x10°*
G4 13.3 1.0037x107* 12.0  1.0028x107*

Oop2 Gl 14.2 1.0033x107* 13.7  1.0023x10°*
G2 18.4 1.0027x107* 102 1.0022x107*
G3 10.2 1.0027=107* 11.4  1.0022x10°*
G4 15.7 1.0036x107* 143 1.0028x107*

OP3 Gl 10.7 1.0020x10~* 84  1.0010x107*
G2 11.5 1.0020x107* 102 1.0027x107*
G3 11.1 1.0027=107* 6.1 1.0022x10~*
G4 10.3 1.0036x10~* 12.3  1.0028x10~*

shown in Table 2 with 3 PID type stabilizers by applymng
a 3 phase fault of 100 ms duration at the middle of one of
the transmission lines between bus-7 and 8. From Table 2,
it is observed that the using the proposed BFA algorithm,
the speed deviations of all machines are greatly reduced
with small overshoots, undershoots and shorter settling
time. Further, it achieves good robust performance
compared to that of stabilizers designed using the PSO
and conventional methods.

CONCLUSION

In this study, novel/improved Bacterial Foraging
Algorithm (BFA) has been successfully applied to the
robust design of multiple PID type stabilizers to improve
damping of the low frequency oscillation m the multi
machine power system. The design problem of the
robustly selecting stabilizer parameters is converted mto
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an optimization problem according to time domain-based
objective function over a wide range of operating
conditions that is solved by the BFA technique. Tt has
stronger global search ability and more robust than PSO
and other heuristic methods. The effectiveness of the
proposed strategy was tested on a 2 area 4 machine
power system under different operating conditions. The
non-linear time domain simulation results demonstrate the
effectiveness of the proposed PID type stabilizers and
their ability to provide good damping of low frequency
oscillations. The system performance characteristics in
terms of ITAE, IAE, ISE and F indices reveal that the
proposed BFA algorithm 1s superior that of the PSO and
others in terms of accuracy and computational effort.
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