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Abstract: The recent techniques of spectrum estimation are based on linear algebraic concepts of subspaces.
In this study, the researchers have used noise subspace method for finding hidden periodicities in DNA. With
the vast growth of genomic sequences, the demand to identify accurately the protein coding regions in DNA
1s mcreasingly rising. In the past, several techmques mvolving various cross-fields have come up, among which
application of digital signal processing tools is of prime importance. Tt is known that coding segments have a
3-base periodicity while non-protein coding regions do not have this unique feature. One of the most important
spectrum analysis techmque based on the concept of subspace 1s the minimum norm method. The minimum
norm estimator developed i this study shows sharp period-3 peaks in coding regions completely eliminating
background noise. Comparison of proposed method with existing Sliding Discrete Fourier Transform (SDFT)
method popularly known as periodogram has been drawn on several genes from various organisms showing
that the proposed method has effective approach towards gene prediction Resolution, quality factor,
sensitivity, specificity, miss rate, wrong rate and computation time are used to establish superiority of mimmum

norm gene prediction method over existing methaod.
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INTRODUCTION

Tt is a well known fact that the most significant
scientific and technological endeavour of 21st century is
related to genomics. Therefore, researchers from various
cross-fields have concentrated in the field of genomic
analysis in order to extract the vast information content
hidden in it. DNA (De-oxyribo Nucleic Acid) 1s the
hereditary material present in all living orgamsms. In
eukaryotic organisms, genes (sequences of DNA) consist
of exons (coding segments) and introns (non-coding
segments). It has been established that genetic
mformation is stored in the particular order of 4 kinds of
nucleoctide bases: Adenine (A), Thymine (T), Cytosine (C)
and Guanine (G) which comprise the DNA bio-molecule
along with sugar-phosphate backbone. Exons of a DNA
sequence are the most information bearing part because
only the exons take part in protein coding while the
introns are spliced off during protein synthesis. Gene
prediction refers to detecting locations of the protein
coding regions of genes in a long DNA sequence. Since,
DNA codes information of proteins, various statistical

and computational techmques have been explored to
study the information content carried by DNA and
distinguish the exons from introns.

Genomic information 1s discrete m nature because it
1s made up of a finite number of nucleotides in the form of
alphabets. Digital Signal Processing (DSP) techniques can
be used as an effective tool to analyze the DNA in order
to capture its periodic characteristics. Estimation of
spectrumn of discretely sampled processes 1s generally
based on procedures employing the Fast Fourier
Transform (FFT). This approach is computationally
efficient and produces reascnable results but mspite of
the advantages, it has certain performance limitations. The
most important limitation lies in its frequency resolution.
Moreover, spectral estimation by Fourier method
generates various harmonics which often lead to false
prediction of coding regions. Among the recently
introduced techniques an eigen decomposition based
method known as the minimum norm solution is found to
be of great interest The researchers m this study
addressed the problems posed by standard FFT
method and proposed a minimum norm algorithm
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based on the concept of subspace frequency estimation
for efficient prediction of coding regions in DNA
sequernce.

Application of digital signal processing methods for
finding periodicities in DN A sequences has been explored
by wvarious researchers (Anastassiou, 2000, 2001,
Vaidyanathan and Yoon, 2004; Zhao, 2006). It 1s
established that exon regions of DNA molecules exlubit a
period-3  property because of the codon structure
involved in the translation of nucleotide bases into amino
acids (Fickett, 1982; Tiwari et af., 1997, Yin and Yue, 2007).
Peng et al. (1995) discussed in their study the statistical
properties of gene. Implementation of digital filters to
extract period-3 components and effectively eliminate
background 1/f noise present in DNA sequence has given
good results (Nair and Sreenadhan, 2006; Tugan and
Rushdi, 2008; Sahu and Panda, 2011). Roy et al. (2009)
introduced Positional Frequency Distribution of
Nucleotides (PFDN), an algorithm for prediction of
coding regions. Parametric techniques of gene prediction
where autoregressive all-pole models were used for
identifying coding and non-coding regions provided
better results (Roy and Barman, 2011). An exclusive
survey of various gene prediction technmiques are
presented by Manaswini and Sahu (2010). Fundamental
theory of principal component analysis is elaborated by
Shlens (2003) and its application 1s discussed by Ubeyli
and Guler (2003).

The researchers in this study have compared and
analyzed power spectral peaks obtained by modified
periodogram method with that by mimmum norm
solution method for identification of coding regions in
DNA sequence (Hayes, 1996, Haykin, 2008; Stoica and
Moses, 2011; Praokis and Manolakis, 2008). The
algorithm is tested successfully on several sample
databases, especially from Celegan orgamism. Celegan
Cosmid F36F11.4a gene from Chromosome-IIT having
Accession number AF099922.1 is presented in detail
(NCBI Gen Bank).

MATERIALS AND METHODS

The PSD estimation of DNA sequence requires
conversion of DNA character strings mto numerical form.
Different researchers have adopted different mapping
methods for this purpose. Here, the researchers have
applied a single sequence quatemary mapping rule
assigmng numerical values,a=-1,¢=-j,g=landt=).
MATLAB 7.1 environment is used to show performance
of the estimators.

Spectral estimation by non-parametric method can be
classified as direct and indirect. These two methods are

equivalent and are popularly known as periodogram
method. The direct method takes Discrete Fourier
Transform (DFT) of the signal and then averages the
square of its magnitude. The mndirect method 1s based on
the idea of first estimating the auto-correlation of data
sequence and then taking its Fourier Transform (FT).

Spectral analysis by periodogram method: Tn direct
method Periodogram P, (f) for signal x (n) can be
computed by DFT or more efficiently by Fast Fourier
Transform (FFT) for N data poimnts as shown:

1
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Where, f, =k/N, fork=0,1, 2, --—-- N-1. To improve
performance in the periodogram method, first the N-point
data sequence 1s sub-divided mto K overlapping
segments of length M each then periodogram 1s computed
and averaged with Bartlett windowing.

Spectral analysis by eigen decomposition: Eigen
decomposition uses vectors that lie in the signal or noise
sub-space. Eigen decomposition of MxM autocorrelation
matrix R, 1s given as follows:

it
R, = zp:llvlviH + 2 AV 2
1=1
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The set of eigen vectors {v,, v;, ..., v}, associated
with largest eigen values span the signal subspace and
are called principal eigen vectors. The second subset of
elgen-vectors {V, ., Vp, ... vyt span the noise subspace
and have ¢,” as their eigen value. Since, the signal and
noise eigen vectors are orthogonal, it follows that the
signal subspace and the noise subspace are also
orthogonal. After eigen decomposition of the
autocorrelation matrix, the eigen values are arranged in
decreasing order A,>A,>h,.. >, as depicted in Fig. 1.
From this plot of eigen values one can distinguish initial
steep slope representing signal and a more or less flat
floor representing noise level

There are three generic steps of pseudo-spectrum
estimation by noise subspace method:

+  Construction of autocorrelation matrix from data

vector
¢  Derivation of noise subspace by eigen
decomposition

¢ Tdentification of signal components from noise
subspace with the help of frequency estimation
function
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Fig. 1: Decomposition of the eigen values of noisy signal
into the principal and noise eigen values

Frequency estimation by minimum norm solution:
Frequency estimation is the process of estimating the
process of complex frequency components of a signal in
the existence of noise. The most common frequency
estimation method involves identifying the noise
subspace to extract these components (Lobos et al,
2000). The mimmum norm algorithm developed m this
study uses a single vector 4 that is constrained to lie on
the noise subspace and the complex exponential
frequencies are estimated from the peaks of the frequency
estimation function:

. . 1
Py (e] ) T 3
&
Where, ¥ is an auxiliary vector given by:
é= [1 e e ej(N_l)W} 4

With a constrained to lie in the noise subspace,

if the autocorrelation function 18 known exactly

then ‘EH‘E will have nulls at the frequencies of each
complex exponentials. Therefore, z-transform of
coefficients of @ may be factored as:
MW-1 P
Afz)= Y a(kjz" = H(lfe””kz’l)
k=0 k=1 (5)
M-1

(1—zkz’1)

Where, z, for k = pt+1 ... M-1 are the spurious roots
that do not in general lie on the umit circle. The mimimum
norm method attempts to elimnate the effects of spurious
zeros by pushing them mside the umit circle leaving
the desired zeros on the unit circle. The problem,
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Noise sub-space
Part of vector7lying in noise sub-space [ch> ﬁ)]

Signal sub-space
G
Fig. 2: Projection of signal vector v on noise sub-space in
a three dimensional vector space

then 1s to determme which vector in the noise sub-space
minimizes the effects of spurious zeros on the peaks of
Py (eJ"’ )

The approach used in minimum norm algorithm is to
find a vector & that satisfies the following three
constraints:

The vector @ lies on the noise sub-space ensuring
that p roots of A (z) are on the unit circle

The vector @ has minimum Euclidean norm ensuring
that spurious roots of A (z) lie mside umit circle

The first element of @ 1s unity, 1.e., mimmum norm
solution 1s not the zero vector

To solve this constrained minimization problem,
researchers begin by noting the constraint that 2 lies on
the noise subspace which 1s given by the following
equation:

a=P¥ (6)

Where, P, = V,V,” is the projection matrix that
projects an arbitrary vector ¥ on the noise subspace
(Fig. 2) (Haykin, 2008). Minimum norm method involves
projection of signal vector ¥ on to the entire noise space.
The third constraint is expressed as:

(7

a'i, =1

Where, 4, [1, 0, 0...0]". This may be combined with
the constramt in Eq. 6 giving:

(B, ) =1 (8)
The norm of @ may be written as:
i =5l = v (e, ) ©
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Since, projection matrix P, is Hermitian, therefore
P, = P,” and idempotent, therefore P’ = P, Hence,
researchers get:

(10}

— 12 — —
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Minimizing 3 is equivalent to finding vector ¥ that
minmimizes the quadratic form of #"p,¥ . Reformulating the
constrained minimization problem:

(1

minv*PV subjectto VH(PnHﬁl):l

Onge, solution of Eq. 8 is found, the minimum norm
solution is formed by projecting ¥ onto noise sub-space
using Eq. 6 and using optimization theory the minimum
norm solution 1s found to be:

(12)

Which is the projection of the unit vector onto noise
sub-space normalized so that the first coefficient is
unity. Here:

1

h= )

(13)

In terms of eigen vectors of the autocorrelation
matrix, the minimum norm solution is given using
quadratic (Qy) factorizing by the following equation:

o (vv“ﬁ) s
(@ (Vv
RESULTS AND DISCUSSION

The proposed algorithm has been tested on various
genes to predict location of coding regions of varying
lengths and simulation results are compared with that of
periodogram method on the same DNA data. According
to period-3, property of DNA a prominent peak should be
visible in the PSD plot of each exon segment. Specific
coding regions of Celegan Cosmid F36F11.4a gene are
mentioned in Table 1 and the statistical parameters and
computation times of both periodogram and minimum
norm methods for genes F36F11.4a, T12B5.1, C30CI11
and 1213156 are indicated in Table 2 and Fig. 3.

Tt is seen that this new approach removes the entire
noise and reveals the hidden periodicities prominently. A
comparison has been drawn with periodogram method
with Bartlett (triangular) shding window with 50% overlap
and suitable segment lengths M and number of segments
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Table 1: Celegan F56Fi I 4a gene coding regions

Exon Start-end {(bp) Exon length (bp)
1 7948-8059 111
2 9548-9877 330
3 11134-11397 264
4 12485-12664 180
5 14275-14625 351

DNA data
sequence

Conversion of data vector
into column vector

v

Computation of
autocorrelation matrix R,

v

Diagonalization of R, to produce diagonal eigen value
matrix D and eigen vector matrix V such that
XxV = VxD, X being signal matrix

!

Evaluation of noise sub-space and
projection of signal vector on noise
sub-space projection matrix

v

Computation of minimum vector @'in the noise sub-space
with first element as unity by quadratic factorization and
applying optimization theory

!

Estimation of pseudo-spectrum by
computing absolute FFT of vector 2to
observe period-3 peaks

Fig. 3: Flowchart of algorithm for proposed minimum

norm solution method for estimating period-3
peaks

K. The choice of window’s length M should be done
subjectively based on a trade-off between spectral
resolution and statistical variance. If M is too small
important features may be smoothed out while if M is too
large the behavior becomes more like periodogram with
erratic variation. Therefore, a compromise value is chosen
between range 1/25<M/N<1/3 where N is nucleotide
sequence length. Quality factor which measures the ratio
of variance to square of mean of PSD has been used as
metric for comparison between the two methods as shown
in Table 2. The plot of quality factor of various genes is
given in Fig. 4. Tt is observed that quality factor of
spectrum by minimum norm method is much higher than
periodogram method. Table 2 also indicates that
computation time required in minimum norm method is
more than periodogram method.
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Table 2: Summary of statistical parameters and computation time of periodogram and minimum norm methods for various genes

Sliding DFT method

Minimum norm method

Q.F. CPU Window K No. of Q.F. CPU Model Percent.
Genes (mean)*/var time (sec) length (m) segments (meany/var time (sec) order (p) rise in Q.F.
F356Filda 4.83 0.24 351 23 121.89 104.87 20 2.42e+3
Ti2B5.1G-1 631 0.14 252 7 347.96 48.72 8 541et3
Ti2B5.1G-2 5.58 0.14 252 8 305.50 50.38 16 5.37et+3
Ti2B5.1G-3 3.54 012 252 4 742.96 06.69 2 2.09%+4
Ti2B5. 1G-4 838 0.15 252 9 221.09 54.15 17 2.54e+3
TI2B5G3G-5 5.88 0.14 252 & 227.29 07.76 17 3.76et+3
C30C11G-1 10,42 0.18 252 12 498.40 11.38 7 4.68e+3
C30C11G-2 3.92 0.10 210 4 107.79 06.20 17 2.65e+3
Di3156 4.84 0.15 351 5 246.08 37.38 17 4.98e+3
800 , _
—— Min. norm 742.96 W; = Wrong Exons
700-{ —®— Periodogram P. = Predicted Exons
600- T, = True Positive
Fp = False Positive
5 5004 F, = False Negative
Q
< 4004
z
S 300- T, corresponds to those genes that are accurately
< predicted by the algorithm and also exist in the GenBank
2004 . . . .
200 221,09 227.29 armotation. I, corresponds to the exon regions identified
1004 ¢121.89 by the given algorithm but are not specified in the
o+ 483 631 558 354 838 583 1042 392 484 standard annotation. Fy; 1s coding region that is present in
the GenBank annotation but is not predicted as a coding
-100 \w' & T > ' & ' B T o '\O'» T segment by the algorithm used. The average of S, and Sp
NP 0) ) B A0 AN A A . s [P
) SO I O M O AR ives the overall exon sensitivity and specificity. Table 3
© ENSEEE NI DD d‘)“ C’Q 9 g ¥ P ty

Various genes

Fig. 4: Quality factor for various genes by mmimum norm
and periodogram methods

Performance comparison of proposed method with
existing method: The performance analysis of the
methods can be made by prediction measures, such as
Sensitivity (3,), Specificity (S;), Miss Rate (Mg) and
Wrong Rate (Wg). Their definitions are given below:

U (15)
(Tp +Fy)
J— (16)
(T, +F)
M, :% (17)
E
W, :% (18)
E

Where:
M; = Missing Exons
A; = Actual Exons
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summarizes the simulation results of the eight genes used
as test data. It is evident from tabulated data that S, S
and the average of 5, and S; of proposed method are
higher than existing method in all the cases where as miss
and wrong rate are much lower indicating superior
performance of the proposed algorithm over existing
method (Meher et al., 2011).

In the beginming, both periodogram techmque and
proposed mimmum norm algorithm are applied to Celegan
Cosmid F36F11.4a gene. The periodogram result is
shown 1n Fig. 4 and the proposed algorithm result is
plotted 1n Fig. 5. It 13 evident from Fig. 6 that 5, period-3
spectral peaks without any noise component are
visible in the specific coding regions as per data
mentioned in Table 1.

Figure 7 and 8 show the results of application of
conventional periodogram method and proposed minimum
norm solution method to 32488 bp length Celegans
Cosmid T12B5.1 DNA (Accession No. FO081674.1
AF100307). The plots show 3 exons in gene-1 between
17332-17402, 17645-18266 and 18311-18505 bp. In Fig. 6,
the exon peaks are present along with other peaks, hence
prediction becomes ambiguous. In Fig. 7 obtained by
the proposed algorithm, there are 3 sharp period-3
peaks present mn proper location absolutely devoid of



J. Eng. Applied Sci., 8 (6): 198-207, 2013

Table 3: Performance analysis summary of data for minirmum norm and periodogram methods

Prediction Measures
Genes DSP methods Threshold value Sy Sp (Sy+8:02 Mg Wy
F56F11da Periodogram 1.75 0.40 1.00 0.70 0.60 0.00
Periodogram 1.50 0.80 0.66 0.73 0.20 0.40
Min. norm * 1.00 1.00 1.00 0.00 0.00
Ti2B5 Gene-1 Periodogram 1.75 1.00 0.43 0.71 0.00 0.55
Periodogram 1.50 1.00 0.33 0.66 0.00 0.66
Min. norm #* 1.00 1.00 1.00 0.00 0.00
Ti2B5 Gene-2 Periodogram 1.75 1.00 0.60 0.80 0.00 0.40
Periodogram 1.50 1.00 0.50 0.75 0.00 0.50
Min. norm * 1.00 1.00 1.00 0.00 0.00
Ti2B5 Gene-3 Periodogram 1.75 1.00 0.15 0.57 0.00 0.84
Periodogram 1.50 1.00 0.12 0.56 0.00 0.87
Min. norm #* 1.00 1.00 1.00 0.00 0.00
T12B5 Gene-4 Periodogram 1.75 0.50 0.40 0.45 0.50 0.60
Periodogram 1.50 0.75 0.33 0.54 0.25 0.66
Min. norm * 1.00 1.00 1.00 0.00 0.00
Ti2B5 Gene-5 Periodogram 1.75 0.66 0.22 0.44 0.33 0.77
Periodogram 1.50 1.00 0.25 0.62 0.00 0.75
Min. norm #* 1.00 1.00 1.00 0.00 0.00
C30Ci1 Gene-1 Periodogram 1.75 0.50 0.40 0.45 0.50 0.60
Periodogram 1.50 1.00 0.40 0.70 0.00 0.60
Min. norm * 1.00 1.00 1.00 0.00 0.00
C30C11 Gene-2 Periodogram 1.75 1.00 0.33 0.66 0.00 0.66
Periodogram 1.50 1.00 0.21 0.60 0.00 0.78
Min. norm #* 1.00 1.00 1.00 0.00 0.00
Di3156 Periodogram 1.75 1.00 0.22 0.61 0.00 0.77
Periodogram 1.50 1.00 0.15 0.57 0.00 0.86
Min. norm * 1.00 0.50 0.75 0.00 0.50
*Threshold value not required
5.0+ -4 Peak-5
4.5 Peak-5 -6
404 Peak-1
~ -8
337 g ) Peak-4
3.0 £ -104 Peak-2
a ‘E Peak-3
A 2.5 I b
204 Peakel Peak-4 > l n
Peak-2 Peak-3 -4 { b ] i
-16
-18 T T T T T T 1
0.0 : : : : i i i , 0 1000 2000 3000 4000 5000 6000 7000
0 1000 2000 3000 4000 5000 6000 7000 8000 Relative base locations

Relative base locations

Fig. 5: Plot of PSD by periodogram method for the
F30F11.4a gene

noise without any scope of ambiguity. Similar results are
seen n Fig. 9 and 10 for gene-2 with 3 exons between
18994-19064, 19349-19997 and 20059-20253 bp. The
technique was verified successfully for the remaining
three genes also. As a third example, application of both
the methods to DNA C30C11 (Accession No. FO080722.7
L09634) from Celegan Chromosome-III having length
30866 bp was considered. Figure 11 and 12 mention
spectral peaks by periodogram and minimum norm
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Fig. 6: Plot of period-3 pealks by minimum norm solution
for F36F 11.4a gene

solution methods, respectively for gene-1 having exons
between 4874-4985, 5034-5408, 5452-6179 and 6227-6526
bp. In Fig. 12, it is observed that peak-2 1s shifted
right from actual position. Figure 13 and 14 indicate
accurate results for gene-2 with exon segments between
7320-7503, 7555-7757 and 7804-7923 bp.

All these plots showmg results of both the
methods reflect the superiority of proposed techmique
over the conventional method because the peaks
obtained with proposed algorithm are  sharp,
unambiguous and without any noise. The threshold
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Fig. 7. Plot of PSD by periodogram methed for
T12B5.1 gene-1
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Fig. 8 Plot of period-3 peaks by minimum norm solution
for T12B5.1 gene-1
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Fig. 10: Plot of period-3 peaks by mimimum norm solution
for T12B3.1 gene-2
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Fig. 11: Plot of PSD by periodogram method for Celegan
C30C11 gene-1
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Fig. 12: Plot of period-3 peaks by minimum norm solution
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for C30C 11 gene-1
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Fig. 13: Plot of PSD by periodogram method for
C30C11 gene-2
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Fig. 14: Plot of period-3 peaks by minimum norm solution
for C30C11 gene-2

values of periodogram method for performance analysis
have been chosen juditiously as 1.75 and 1.5,
respectively. Table 3 indicates list of genes studied and
performance analysis of periodogram and mimimum norm
solution approaches. In all the examples cited the
proposed method shows better results than the existing
method giving higher value of sensitivity, specificity and
their average as well as low miss and wrong rates.

Model order selection approach based on eigen ratio: A
key issue in developing eigen decomposition model is
selection of proper model order p. In order to estimate
minimum norm solution based pseudo-spectrum, the
dimension M-p of the noise subspace must be determined
accurately. Tf value of p taken is less, then few prominent
peaks may go umoticed. On the other hand 1if p 15 more
than required value, undesired peaks are introduced in the
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Fig. 15: Plot of eigen value vs. model order for

F36F11.4a gene

plot leading to false prediction. The most common
approach 1s to calculate and sort the eigen values of the
correlation matrix R, of the noisy signal as mentioned
here. The eigen values plotted in decreasing order is
known as scree plot. The prime eigen values of dimension
p with steep slope correspond to the signal subspace.
The set of smallest eigen values having dimension M-p
with values equal to noise variation ¢° is more or less flat
in nature (Fig. 1). Decrease in negativity of the derivative
from higher value to lower value is determined by
slope of tangents drawn from the scree plot to the x-axis.
About 2 points are chosen carefully on the scree plot,
such that the first is on steep slope and second is on less
steep portion of the eigen curve. The values of model
order p intercepted by the two projections drawn
vertically downward from the point of the tangent
touching the eigen curve (scree plot) to the x-axis are
identified. A big gap or elbow is looked for within this
segment to be vtreated as threshold between signal and
noise sub-spaces with the help of the following technique
(Fig. 15 and 16).

A very simple method based on eigen ratio adopted
by the researcher has been discussed in this study
(Liavas and Regalia, 2001). As shown in Fig. 17 and 18,
the researchers have plotted eigen value ratio A /A, vs p.
Tt is observed that there exists an eigen value gap of high
magnitude between orders p 20, 21, 16 and 17,
respectively. Satisfactory estimates of rank of R, by
suggested method was found to be 20 for F36F11.4a
gene, 16 for T12B5.1 gene-2 and 7 for C30C 11 gene-1,
respectively. Thus, it may be considered that eigen values
Ay 17 5 onwards are the noise eigen values in the three
cases, respectively.

Spectral content measure techniques based on
sliding DFT was compared with proposed technique.
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Tiwari et al. (1997) employed Fourier technique to analyze
three-base periodicity in order to recognize coding
regions 1n genomic DNA. They observed that some genes
do not exhibit period-3 property at all i S. cerevisiae.
Anastassiou (2000, 2001) was inspired by the research of
Tiwari et al. (1997) and introduced computational and
visual tools for amalyzing bio-molecular sequences.
Researcher provided optimization procedure for improving
performance  of  traditional  Fourier technique.
Vaidyanathan and Yoon (2004) designed multistage
narrowband bandpass filter for reducing background 1/
noise. Sahu and Panda (2011) improved computational
efficiency by employing SDIT with the help of Goertzel
algorithm but the method is constrained by frequency
resolution and spectral leakage effects.

The mimimum norm algorithm presented in this study
provides a novel approach. The first important feature of
the proposed algorithm is that it produces extremely sharp
period-3 peaks in the protein coding regions. The second
important feature 1s that it eliminates noise completely,
hence there is no requirement of setting threshold value.
Moreover, this method offers very high sensitivity and
specificity at the same time very low miss rate and wrong
rate compared to other available techmiques. The
proposed algorithm though offers high predictive
accuracy compared to existing methods, it has certain
limitations on its part. Model order selection which 1s a
key 1ssue needs to be done judiciously for accurate exon
detection. The time of execution is more compared to
existing methods, since it depends on autocorrelation lag
size which 1s pre-determined depending on length of
nucleotide sequence bemng tested.

CONCLUSION

DNA sequence analysis through power spectrum
estimation by traditional non-parametric methods 1s in use
for long. These are methodologically straight forward,
computationally simple and easy to understand but due
to low SNR spectral features are difficult to distinguish as
noise artifacts appear in spectral estimates. Therefore,
effective identification of protein-coding region becomes
difficult. The application of minimum norm frequency
estimator to capture period-3 peaks in coding regions has
been introduced here. Researchers used a constrained
vector that lies on the noise subspace and completely
filtered out the spurious peaks. Selection of proper model
order 1s a fundamental 1ssue in application of eigen
decomposition approach. The eigen ratio gap or elbow
located on the scree plot 18 treated as threshold between
signal and noise spaces. Use of eigen decomposition
based methods to various DNA sequence has given
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amazing results as compared to standard classical
methods in terms of resolution, quality factor, sensitivity,
specificity, miss rate and wrong rate. It was observed that
high resolution pseudo-spectrum estimation, such as
mimmum norm could be effectively used for identification
of protein coding regions m DNA. Unfortunately, the
computational effort of this high resolution method 1s
significantly higher than FFT processing. Since, the main
objective is to detect protein coding regions accurately
which is fulfilled by the proposed method, increase in
computation time may be compromised. Hence, it can be
concluded that identification of protein-coding regions in
DNA can be done effectively in a much superior way by
applying mimimum norm technique compared to
periodogram power spectrum estimator.
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