Tournal of Engineering and Applied Sciences 8 (5): 172-176, 2013

ISSN: 1816-949%
© Medwell Journals, 2013

Enhanced Approaches to Improve Graphical User Interface Testing Process

'E. Vijayakumar and M. Punithavalli
'School of Computer Applications, Professional Institutions,
“Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India

Abstract: Graphical User Interfaces (GUI) are important components of HEvent-Driven software that are used
mainly for improving user-computer interactions. As the number of graphical controls that the user can select
using mouse or key board is very lugh, the number of test cases generated is also very high. Thus, the test
cases generation process has to be optimized. This research performs this in three steps by enhancing the three

operations, namely; test case generation, reduction and priontization. Experimental results prove that the

methods proposed have optimized the process of test case generation and has mmproved the accuracy of error
detection rate. A maximum of 99.25% fault detection rate was obtained which shows that the proposed
amalgamation of techniques are successful and can be used by the 21 st century software.

Key words: Graphical user interface, test case generation, test case reduction, prioritization, classification

INTRODUCTION

Event-Driven Software (EDS) have rapidly become
a critical part of business in many orgamzations. All
EDSs take sequences of events (e.g., messages and
mouse-clicks) as input, change their state and produce an
output (e.g., events, system calls and text messages)
(Bryce and Memon, 2007). Commoen examples of EDS
mclude  Graphical User Interfaces (GUIs), web
applications, networlk protocols, embedded software,
software components and device drivers, among which
Graphical User Interface (GUI) plays a vital role in
unproving the Human-Computer Interaction (HCI) and
plays a key role in the acceptability of the software. GUI
comsists of graphical controls that the user can select
using mouse or keyboard and consists of components like
menu bar, toolbar, windows and buttons. It has become
the de facto standard for user interface in almost all of the
modem technologies.

Research has shown that in general, 40-60% of the
total software code has been used for implementing GUI
(Myers, 1995). In spite of GUI providing easy way to use
the software, they make the development process of the
software complex and make up a large proportion of all
software errors. All these make GUI testing a mandatory
process where the goal is to ensure that the GUI meets its
written specifications.

In spite of these studies showing the importance
of testing in GUIL approaches that test the
functional correction of these interfaces has been
largely neglected and is only, in the past few years
have got attention. A review of various techniques

and metrics available for this purpose can be
obtained from Vijayakumar and Punithavalli (2009).

General tests are not applied directly to GUTs because
of the increased number of states generated because of
huge number of permutations of mput events. For
adequate testing, an event may need to be tested in many
of these states, requiring large number of test cases (each
represented as event sequent) (Memon, 2007). This
increases the need for reduction and prioritization of GUL
test suites. In response to these requirements, this
research presents a test case frameworl that focus on
three mmportant tasks, namely; GUI test case generation,
reduction and prioritization.

Automation of these tasks are becoming complex
as the GUI's are becommg more complex and the
21st century demands of end users require sophisticated
user mterfaces which further complicates the process of
testing the correctness and underlying software. In
event-driven architecture, create huge
number of events and the automatic test cases have to
simulate these events. The high number of events makes
the testing process a time consuming process. Large
space of possibilities, as the user may click on any pixel
on the screen and even the simplest components have a
large number of attributes and methods.

GUI provides enormous amounts of possible
interaction which again makes the process of testing an
intricate job. To address these challenges, techniques that
focus on optimizing the test case generation process
along with reduction and prioritization technicues need to
be designed. This study is an attempt made in this
direction.

user actions

Corresponding Author: E. Vijayakumar, School of Computer Applications, Professional Institutions, Coimbatore, India



J. Eng. Applied Sci., 8 (5): 172-176, 2013

MATERIALS AND METHODS

The research proposes various techniques that are
designed to find optimized solutions to the above
questions and are grouped into 3 phases. The techniques
proposed in each of these phases are described as:

Test case generation technique: Phase I of the study aims
to automate the process of test case generation for GUIT
by incorporting additional characteristics that reduces
the number of test cases generated. To achieve this aim,
the Automatic Test Case Generation (ATCGQG) algorithm 1s
enhanced to identify three types of user intereaction
handlers, namely; shared event, context sensitive event
and lidden widget handlers. The shared event handler
represents common code fragments that are used by
different user interactions while the context sensitive
event handlers states that the control flow of a user
mteraction handling of a program fragment depends on
the order of the preceding user interactions (Arlt ef al.,
2011). A hidden widget is a shortcut connected to a
certain event handler in the same manner as the event
handler of a button’s click. Since, shortcuts that can be
used by a user are not visible to them, mining the source
code can reveal event handlers that are called if a
particular key stroke occurs. Thus, the ATCG model
generates test cases using the steps given as:

Extract widgets and handlers
Tdentify and eliminate shared events
Identify context-sensitive events
Identify ludden events

Generate test cases

In this model, an application is defined by a GUI and
a set of instructions (Java code). The GUI consists of
widgets (buttons, text boxes, radio buttons, etc.) which
the users use for interaction. Each interaction generates
an event (e) which consists of the widget used along with
the type of interaction and each event is associated with
an event handler (h). Event handlers are routines that are
executed when an event (e) occurs. If E is the set of all
events, H consists of all event handlers, the relation
Ex: ExH can identify the set of instruction h = Ex (e) that
handles an event e. The GUI test case is then a sequence
of events t = {el, ..., en} and an oracle descries if the
output of a sequence meets the requirements. The GUI
test model 15 defined as M = (s, 8) where S 1s a finite set of
states and & = S = (E u {€}) x S is a set of transitions
between two states labeled with an event e € E.

For generating the model of the GUI, information
about the possible user interactions from the source code

173

is mined. The application is analyzed to collect all events
(or user interactions) together with the source code
fragment that handles this event. The mining procedure
iterates over a JAVA program given as a set of classes.
For each class, an iteration is performed over the
attributes. For each attribute, a check 1s made to decide if
the attribute 1s an instance of a widget type that appears
in the GUI If the attribute is not a widget type, it is
skipped and the procedure continues with the next
attribute. Tf the attribute is a widget type, the algorithm
iterates over the event handlers associated with this
widget. All events created for one widget are collected.

For each attribute in the source code that represents
a widget, a pair of an event (e) that represents the
interaction with this widget 1s recorded along with the
program fragment h that handles this event. The fragment
h is obtained by following the control-flow starting from
the location that handles e. If the pair (e, h) is already
recorded and if the events e and e' are handled by the
same source code fragment b, dismiss the pair (e, h), as
the event (&) is sufficient to test h. In the special case that
h does not have control-flow (that is the event is not
implemented), the pair (e, h) 1s dismissed again. In the
resulting set, each event (e) is associated with a unique
source code fragment h.

From the list of pairs of events and event handlers,
the context of each event handler 1s next identified. Given
a pair (e, h) of event and handler, the code (h) that
handles an event {e) is a said to be a context sensitive
event handler if the control-flow path taken when e is
handled depends on variables that are modified by other
event handlers. That 1s, if the control-flow path taken i h
is influenced by certain preceding events. These events
are 1dentified by analyzing the control flow and for each
conditional choice (i.e., loops, if-then-else, etc.), the
algorithm checks if the condition evaluates attributes of
objects that are derived from a JComponent. Tf such an
object is detected, the events associated with this widget
are added to the list of context events Ctx (h) of the
handler (h). The hidden widgets and their corresponding
events are identified by performed the search operations
to include action listeners along with key and mouse
listeners.

The automation moedel for test case generation is
then built using the a list of pairs (e, h) of event (e) and
event handler (h) along with list of events Ctx (h) that
might affect the control-flow of h and hidden event
handlers. The input of the test case generation algorithm
includes the model, TC size that determines the number of
events of each test case, timeout that determines for how
long the test cases will be generated and the seed that
determines the random seed used for test case generation.



J. Eng. Applied Sci., 8 (5): 172-176, 2013

The test case generation algorithm starts with an empty
sequence of events tc. The testing procedure is repeated
until a given timeout 1s reached. Starting from the mitial
state n model M, in each iteration of the loop, one
outgoing edge is randomly picked and traverse to the
target state. The event from the edge label is added to te.
This procedure 1s repeated until the imitial state of M 1s
reached agam and the length of tc 1s larger than the
threshold TC size. The resulting sequence of events tc is
executed and a check is performed to find if the program
terminates abnormally. If that be the case, this sequence
1s reported to test engmeer and the sequence of events 1s
reset and the process is started over until the time limit is
reached.

Reduction of test cases: This phase aims to eliminate
redundant events to reduce the number of test cases
generated. As the number of test cases generated have a
direct mfluence on the performance of the testing process,
1t 18 always desirable to reduce this number n a way it
does not degrade the testing performance. For thus
purpose, this phase uses a 2-stage method to identify
feasible and mfeasible test cases and ehimmates the
infeasible test cases, thus reducing the number of test
cases. Detailed description of the steps involved during
test case generation while using the reduction techmque
1s published by Vyjayakumar and Punithavalli (2013).

Test case prioritization: Prioritizing and scheduling test
cases are one of the most crnitical tasks during the
software testing process. According to Gove and Faytong
(2012), if there are approximately 20,000 lnes of code,
running the entire test cases requires around 7 weeks. In
these type of situations, test engineers may want to
prioritize and schedule those test cases in order that those
test cases with higher priority are executed first. Test case
prioritization techniques prioritize and schedule test cases
i an order that attempts to maximize some objective
function. Several researchers have focused on the
problem of optimizing the operation of prioritization to
identify the various advantages for mmproving testing
process. However, the field still faces the followmng major
1ssues:

Existing test case prioritization methods ignore the
practical weight factors in their ranking algorithm
Existing techmques have an mefficient weight
algorithm

Pair-wise comparison has been successfully utilized
n order to prioritize test cases by exploiting the rich,
valuable and unique knowledge of the tester.
However, the prohibitively large cost of the pairwise
comparison method prevents it from bemng applied to
large test suites

174

This phase of the study solves the earlier issues by
using an Agglomerative Hierarchical Clustering Algorithm
(Yoo et al., 2009) based on their runtime behaviour to
reduce the required number of pair-wise comparisons
The of required
comparisons makes it feasible to apply expert-guided
priorntization techmques to much larger data sets. The
clustering process partitions objects
subsets so that objects in each group share common

significantly. reduced number

into  different

properties. The clustering criterion determmes which
properties are used to measwure the commonality. When
considering test case prioritization, the ideal clustering
criterion would be the similarity between the faults
detected by each test case. However, this mformation 1s
inherently unavailable before the testing task 1s fimished.
Therefore, it is necessary to find a swrogate for this, in
the same way as existing coverage-based prioritization
techmques surrogates fault-detection
capabilities. In this phase, the dynamic execution traces of
each test case are used as a surrogate for the similarity
between features tested Execution of each test case is

tun  to for

represented by a bmary string. Each bit corresponds to a
statemment m the source code. If the statement has been
executed by the test case, the digit is 1; otherwise it is 0.
The similarity between two test cases is measured by the
distance between 2 binary strings using Hamming
distance.

Prioritization of a clustered test suite is a different
problem from the traditional test case prioritization
problem. The two separate layers of prioritization are
required in order to prioritize a clustered test suite
(Roongruangsuwan and Daengdej, 2010). Intra-cluster
prioritization is prioritization of test cases that belong to
the same cluster whereas inter-cluster prioritization is
prioritization of clusters. The study combines both intra
and inter-cluster prioritization and the method 1s termed as
Combined Intra and Inter Clustering Priontization (C2ICP)
Algorithm. In C2ICP, intra-cluster prioritization is
performed first. Based on the results of intra-cluster
prioritization, each cluster is assigned a test case that
represents the cluster. Using these representatives, C2ICP
performs inter-cluster prioritization.

Apart from the earlier cluster-based prioritization
algorithm, phase III method also considers four types
of techmques, namely; customer requirement based,
coverage based, cost effective based and chronographic
history based techmque. These are included to solve the
problems of same weight being assigned to >1 test case
and multiple test suites. During prioritization of each
cluster, first the defect factor is used to weight the test
cases. In case of test cases having same weights, the time



J. Eng. Applied Sci., 8 (5): 172-176, 2013

factors are considered. Tf further analysis, still produce
same welghts then cost factors are considered to calculate
the weight. If the test cases still have same weights then
finally, the weights are assigned base on text execution
history. Finally, the intra and mter clusters are arranged in
descending order of test case weights and the test case
with highest priority 1s executed first. This techmique
presents the advantage of improving the capability of
ranking or scoring test cases when there are multiple test
cases with the same priority. This procedure increases the
efficiency of ranking test cases and improves the GUI
testing process.

Further, the proposed method 1s further enhanced to
handle prioritization when there are 1 test suites, each
having a set of test cases. This enhancement operation
first prioritizes the test cases inside each suite separately
and then prioritizes the test suits according to the
summation of the cumulative product of weights and
value of each priority technique.

Proposed framework: The proposed enhanced GUT test
case generation algorithm, thus performs the techniques
proposed in phase I-TIT of the study in a sequential
manner to perform GUI testing. Experimental results
showed that the 2-stage classifier that uses wavelet neural
network for stage 1 and support vector machine for
stage 2 produced better results and therefore are used in
the framework.

RESULTS AND DISCUSSION

Several experiments were conducted to analyze the
performance of the proposed algonthms. The
experiments were conducted in four groups with each
group of experiments focusing on each of the study. The

Table 1: Number of test cases generated

algorithms were tested using TerpOffice applications,
TerpWord, TerpPaint TerpPresent and TerpSpreadsheet
(TerpOffice, 2009). The enhanced automatic generation of
test cases algorithm was analyzed using the nmumber of
test cases generated. Table 1 shows the effect of test case
generation algorithm on number of test cases generated.
From Table 1, it is evident that the number of test cases
generated while using the shared and context sensitive
event handler is small.

The 2nd phase algorithms were analyzed using three
parameters, namely; fault detection rate and error rate of
identifying the errors. The 9 combinations of classifiers
were developed by varying the three classifiers (BPNN,
SVM and WNN) used by stage 1 and 2 of the algorithm,
nine combinations of classification models were
developed to reduce number of test cases generated.
They are BPNN + BPNN (BB), SVM +SVM (S8), WNN +
WNN (WW), BPNN + SVM (BS), SVM + BPNN (SB),
BPNN +WNN (BW), WNN + BPNN (WB), SVM + WNN
(SW) and WNN + SVM (WS). Table 2 and 3 present the
detection and error rates of the classifiers. The percentage
of training data used for training stage 1 classifier is 80%.
The results obtained are compared with conventional
classifiers SVM, WNN and BPNN.

From phase IT results, it can be seen that all the 9
proposed models have mmproved the conventional
classification method and the combination that used
WNN for stage 1 and SVM for stage 2 is the winner
among the 9 proposed classification model.

The 3rd phase algorithms were compared using high
priority reserve effectiveness and size of acceptable test
cases. The results obtained are presented m Fig. 1 and 2.
From the results, it is evident that the proposed algorithm
has improved the process of test case prioritization and
thus, the overall testing with all the selected applications.

No. of test cases with

No. of test cases with

No. of test cases with shared and

Applications shared vent handler context-sensitive event handler context-sensitive event handler
TerpWord 48 29 15

TerpPaint 98 56 41

TerpPresent 67 47 22
Terp8preadsheet 33 39 25

Table 2: Detection rate (%)

Terp application BB SS WW BS SB BW WB SW WS SVM WNN BPNN
Woard 91.82 o98.44 98.69 91.99 97.99 92.96 98.15 9871 98.77 90.83 91.36 89.15
Paint 8811 94.32 95.08 88.24 94.02 88.59 94.31 95.14 95.50 86.04 87.03 84.72
Present 90.06 96.75 97.18 90,51 95.90 91.01 95,99 97.34 97.82 87.91 80.06 86,57
Spreadsheet 88.96 95.65 96.43 89.44 94.78 89.94 o4.96 96.50 96.71 86.75 87.47 85.14
Table 3: Error rate (%)

Terp application BB SS WW BS SB BW WB SW WS SVM WNN BPNN
Woard 211 0.12 0.11 1.35 0.29 1.26 0.24 011 0.11 7.08 5.77 8.46
Paint 4.05 1.05 0.80 3.11 1.75 2.58 1.50 0.50 0.39 9.96 8.05 10.91
Present 5.62 1.88 1.44 514 2.28 4.64 2.22 0.95 0.92 11.04 9.89 12.00
Spreadsheet 6.87 2.63 2.07 5.73 381 549 3.45 1.67 1.42 13.16 11.49 13.20

175



J. Eng. Applied Sci., 8 (3): 172-176, 2013

501
B Random approach
B Proposed method

404

30

HPRE (%)

204

w

Fig. 1: High priority reserve effectiveness (%)

B Random approach

607 B Proposed method

50

404

Siza (%)

304

204

w Pa Pr

Fig. 2: Size of acceptable test cases (%)

Table 4: Fault detection rate (%)

Framework Word Paint Present Spreadsheet
Test Case Generation (TCG) 89.26 90.27 92.08 93.84
TCG with reduction 98.77 95.50 97.82 946.71
TCG with reduction 99.25 96.40 98.58 97.90
and prioritization

Table 5: Error rate in Terp applications (%)

Framework Word  Paint  Present  Spreadsheet
Test Case Generation (ICG)  0.97 1.15 1.54 2.94
TCG with reduction 0.11 0.39 0.92 1.42
TCG with reduction 0.08 0.22 0.80 1.26

and prioritization

The last stage of experimentation analyzes the test
case framework that 15 build using the winming algorithms
of each phase. The performance metrics used are analyzed
using detection rate and error rate and the results
obtained are tabulated in Table 4 and 5. Experimental
results prove that the techniques proposed mn each phase
enhances the performance of its respective process and
the framework that combines these algorithms improves
the fault detection of the GUI applications.

176

CONCLUSION

This research 13 focused on improving the GUI
testing process and performs it using three main steps,
namely; test case generation, selection and prioritization.
The methodology framed proposes techniques for each of
these techniques which are then combined to form a
automated GUI testing framework. The experimental
results proved that the performance of the proposed
models at each step improved the performance of the
existing algorithm. Further, the results also proved that
the proposed fault detection frame 1s successful in
identifying errors m GUI and can be used by software
industries to effectively identify errors and to improve
overall software quality.

REFERENCES

Arlt, S., C. Bertolim and M. Schaf, 2011. Belund the
scenes: An approach to incorporate context in GUI
test case generation Proceedings of the IEEE 4th
International Conference on Software Testing,
Verification and Validation Workshops, March 21-25,
2011, Berlin, Germany, pp: 222-231.

Bryce, R.C. and AM. Memon, 2007. Test suite
prioritization by interaction coverage. Proceedings of
the Workshop on Domam Specific Approaches to
Software Test Automation: In Conjunction with the
oth ESEC/FSE Toint Meeting, September, 4, 2007,
Dubrovmk, Croatia, pp: 1-7.

Gove, R. and I. Faytong, 2012. Identifying infeasible GUL
test cases using support vector machines and
induced grammars. Proceedings of the IEEE 4th
International Conference on Software Testing,
Verification and Validation Workshops, March 21-25,
2011, Berlin, Germany, pp: 202-211.

Memon, A.M., 2007. An event-flow model of GUI-based
applications for testing. T. Software Test. Verification
Reliab., 17: 137-157.

Myers, B.A., 1995. User interface software tools. ACM
Trans. Comput. Hum. Interact, 2: 64-103.

Roongruangsuwan, 3. and J. Daengdej, 2010. Test case
prioritization techniques. J. Theor. Applied Inform.
Technol., 18: 45-60.

Vyayakumar, E. and M. Pumthavalli, 2009. A survey on
user interface defect detection m object oriented
design. Global T. Comput. Sci. Technol., 9: 176-182.

Vyayakumar, E. and M. Punithavalli, 2013. Enhanced GUL
test case generation method using two-stage
classification method. Int. I. Comput. Appl., 63: 29-33.

Yoo, S., M. Harman, P. Tonella and A. Susi, 2009.
Clustering test cases to achieve effective and scalable
prioritisation  incorporating  expert knowledge.
Proceedings of the 18th International Symposium on
Software Testing and Analysis, July 19-23, 2009,
Chicago, TL., USA., pp: 201-212.



